National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, 117543 Singapore.
Nature. 2012 Mar 4;483(7389):355-8. doi: 10.1038/nature10865.
Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A to form lasalocid A. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue to provide the first atomic structure-to our knowledge-of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis.
多环聚醚天然产物以其有用的生物活性、高度复杂的结构和有趣的生物合成机制而引起了化学家们和生物学家们的兴趣。继最初提出的 lasalocid 和 isolasalocid 的多环氧起源以及 both lasalocid 和 monensin 的氧和碳原子起源的实验确定之后,提出了聚醚离子载体抗生素生物合成的统一立体化学模型。该模型基于立体特异性氧化全反式多烯聚酮中间体生成的假定多环氧底物的亲核环封闭级联反应。此后不久,提出了一个涉及一系列名义上不利的反-Baldwin、内-四环氧开环反应的海洋梯毒素生物发生的相关模型。最近,我们从 Streptomyces lasaliensis 基因簇中鉴定出 Lsd19 是负责 bisepoxyprelasalocid A 开环环化形成 lasalocid A 的环氧化物水解酶。在这里,我们报告了 Lsd19 与其底物和产物类似物的 X 射线晶体结构,提供了第一个(据我们所知)能够催化不利的环氧化物开环环状醚形成的天然酶的原子结构。基于我们的结构和计算研究,我们提出了聚醚天然产物生物合成中酶催化的一般机制。