Suppr超能文献

核蛋白 Fis 的稳健翻译需要一个远程上游 AU 元件,并受 RNA 二级结构增强。

Robust translation of the nucleoid protein Fis requires a remote upstream AU element and is enhanced by RNA secondary structure.

机构信息

Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.

出版信息

J Bacteriol. 2012 May;194(10):2458-69. doi: 10.1128/JB.00053-12. Epub 2012 Mar 2.

Abstract

Synthesis of the Fis nucleoid protein rapidly increases in response to nutrient upshifts, and Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions. Previous work has shown that control of Fis synthesis occurs at transcription initiation of the dusB-fis operon. We show here that while translation of the dihydrouridine synthase gene dusB is low, unusual mechanisms operate to enable robust translation of fis. At least two RNA sequence elements located within the dusB coding region are responsible for high fis translation. The most important is an AU element centered 35 nucleotides (nt) upstream of the fis AUG, which may function as a binding site for ribosomal protein S1. In addition, a 44-nt segment located upstream of the AU element and predicted to form a stem-loop secondary structure plays a prominent role in enhancing fis translation. On the other hand, mutations close to the AUG, including over a potential Shine-Dalgarno sequence, have little effect on Fis protein levels. The AU element and stem-loop regions are phylogenetically conserved within dusB-fis operons of representative enteric bacteria.

摘要

Fis 核蛋白的合成会迅速响应营养物质的增加,并且在营养丰富的生长条件下,Fis 是大肠杆菌中最丰富的 DNA 结合蛋白之一。先前的工作表明,Fis 合成的控制发生在 dusB-fis 操纵子的转录起始处。我们在这里表明,尽管二氢尿嘧啶合酶基因 dusB 的翻译水平较低,但会采用特殊的机制来实现 fis 的高效翻译。位于 dusB 编码区内部的至少两个 RNA 序列元件负责 fis 的高翻译。最重要的元件是位于 fis AUG 上游 35 个核苷酸(nt)处的 AU 元件,它可能作为核糖体蛋白 S1 的结合位点发挥作用。此外,位于 AU 元件上游的 44 个核苷酸片段预测会形成茎环二级结构,在增强 fis 翻译方面发挥重要作用。另一方面,靠近 AUG 的突变,包括潜在的 Shine-Dalgarno 序列,对 Fis 蛋白水平的影响很小。AU 元件和茎环区在代表性肠杆菌科 dusB-fis 操纵子中具有系统发育保守性。

相似文献

3
FIS activates glnAp2 in Escherichia coli: role of a DNA bend centered at -55, upstream of the transcription start site.
FEMS Microbiol Lett. 2006 Apr;257(1):99-105. doi: 10.1111/j.1574-6968.2006.00150.x.
4
Regulation by nucleoid-associated proteins at the Escherichia coli nir operon promoter.
J Bacteriol. 2008 Nov;190(21):7258-67. doi: 10.1128/JB.01015-08. Epub 2008 Aug 29.
6
Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5'-Terminal AUG.
J Bacteriol. 2017 Jun 27;199(14). doi: 10.1128/JB.00091-17. Print 2017 Jul 15.
7
Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli.
Nucleic Acids Res. 2011 Mar;39(6):2073-91. doi: 10.1093/nar/gkq934. Epub 2010 Nov 21.
8
The role of FIS protein in the physiological control of the expression of the Escherichia coli meta-hpa operon.
Microbiology (Reading). 2008 Jul;154(Pt 7):2151-2160. doi: 10.1099/mic.0.2007/015578-0.
9
Sequence, regulation, and functions of fis in Salmonella typhimurium.
J Bacteriol. 1995 Apr;177(8):2021-32. doi: 10.1128/jb.177.8.2021-2032.1995.

引用本文的文献

1
Genetic components of involved in its complex prey-predator interaction with .
Front Microbiol. 2023 Dec 5;14:1304874. doi: 10.3389/fmicb.2023.1304874. eCollection 2023.
4
Synonymous Mutations in Lead to Ribosomal Assembly Defects That Can Be Compensated by Mutations in and .
Front Microbiol. 2020 Mar 6;11:340. doi: 10.3389/fmicb.2020.00340. eCollection 2020.
6
Transcriptional Responses to ppGpp and DksA.
Annu Rev Microbiol. 2018 Sep 8;72:163-184. doi: 10.1146/annurev-micro-090817-062444.
7
An A/U-Rich Enhancer Region Is Required for High-Level Protein Secretion through the HlyA Type I Secretion System.
Appl Environ Microbiol. 2017 Dec 15;84(1). doi: 10.1128/AEM.01163-17. Print 2018 Jan 1.
8
Suppressors of dGTP Starvation in Escherichia coli.
J Bacteriol. 2017 May 25;199(12). doi: 10.1128/JB.00142-17. Print 2017 Jun 15.

本文引用的文献

1
2
Circuitry linking the Csr and stringent response global regulatory systems.
Mol Microbiol. 2011 Jun;80(6):1561-80. doi: 10.1111/j.1365-2958.2011.07663.x. Epub 2011 May 5.
3
Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis.
EMBO J. 2010 Jun 2;29(11):1840-50. doi: 10.1038/emboj.2010.73. Epub 2010 Apr 20.
4
The shape of the DNA minor groove directs binding by the DNA-bending protein Fis.
Genes Dev. 2010 Apr 15;24(8):814-26. doi: 10.1101/gad.1900610.
5
Bacterial nucleoid-associated proteins, nucleoid structure and gene expression.
Nat Rev Microbiol. 2010 Mar;8(3):185-95. doi: 10.1038/nrmicro2261. Epub 2010 Feb 8.
8
Translation initiation region sequence preferences in Escherichia coli.
BMC Mol Biol. 2007 Oct 31;8:100. doi: 10.1186/1471-2199-8-100.
9
Identification of an AU-rich translational enhancer within the Escherichia coli fepB leader RNA.
J Bacteriol. 2007 Jun;189(11):4028-37. doi: 10.1128/JB.01924-06. Epub 2007 Mar 30.
10
Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis.
J Mol Biol. 2006 Dec 8;364(4):777-98. doi: 10.1016/j.jmb.2006.09.043. Epub 2006 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验