Suppr超能文献

大肠杆菌类核蛋白Fis介导染色体压缩和环化的机制

Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis.

作者信息

Skoko Dunja, Yoo Daniel, Bai Hua, Schnurr Bernhard, Yan Jie, McLeod Sarah M, Marko John F, Johnson Reid C

机构信息

University of Illinois at Chicago, Department of Physics, Chicago, IL 60607-7059, USA.

出版信息

J Mol Biol. 2006 Dec 8;364(4):777-98. doi: 10.1016/j.jmb.2006.09.043. Epub 2006 Sep 22.

Abstract

Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis-DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 microM Fis, are able to collapse large DNA molecules via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role in vivo as a domain barrier element by organizing DNA loops within the E. coli chromosome.

摘要

Fis是大肠杆菌快速生长期间最丰富的DNA结合蛋白,人们怀疑它在确定类核结构中起重要作用。我们通过体相和单DNA分子实验,分析了Fis与DNA非特异性结合的结构后果。Fis在纳摩尔浓度下以基本序列中性的方式结合DNA,由于DNA弯曲,在施加力的情况下导致轻微压缩。随着浓度增加,Fis首先包裹DNA形成有序阵列,每21个碱基对结合一个Fis二聚体,然后突然转变为形成更高阶的Fis-DNA细丝,称为低迁移率复合物(LMC)。LMC最初每21个碱基对的DNA包含两个Fis二聚体,但随着浓度进一步增加,额外的Fis二聚体组装到LMC中。这些在1微摩尔或更高浓度的Fis下形成的复合物能够通过稳定DNA环来折叠大的DNA分子。单个DNA分子上环的打开和关闭可以实时跟踪为DNA延伸的突然跳跃。即使在DNA弯曲压缩未改变的条件下,环稳定复合物的形成对高离子强度也很敏感。突变体分析表明,Fis介导的DNA环化不涉及Fis二聚体结构的三级或四级变化,但位于螺旋-转角-螺旋DNA结合区域内外的许多表面暴露残基至关重要。这些结果表明,Fis可能通过在大肠杆菌染色体中组织DNA环而在体内作为结构域屏障元件发挥作用。

相似文献

4
Facilitated Dissociation of a Nucleoid Protein from the Bacterial Chromosome.类核蛋白从细菌染色体上的易化解离
J Bacteriol. 2016 May 27;198(12):1735-42. doi: 10.1128/JB.00225-16. Print 2016 Jun 15.
10
Crystal structure of the nucleoid-associated protein Fis (PA4853) from Pseudomonas aeruginosa.铜绿假单胞菌核相关蛋白 Fis(PA4853)的晶体结构。
Acta Crystallogr F Struct Biol Commun. 2020 May 1;76(Pt 5):209-215. doi: 10.1107/S2053230X20005427. Epub 2020 Apr 29.

引用本文的文献

4
Spatio-temporal organization of the chromosome from base to cellular length scales.从碱基到细胞长度尺度的染色体时空组织。
EcoSal Plus. 2024 Dec 12;12(1):eesp00012022. doi: 10.1128/ecosalplus.esp-0001-2022. Epub 2024 Jun 12.

本文引用的文献

2
Entropic compression of interacting DNA loops.相互作用的DNA环的熵压缩
Phys Rev Lett. 2005 Aug 12;95(7):078104. doi: 10.1103/PhysRevLett.95.078104. Epub 2005 Aug 11.
5
Bacterial chromatin.细菌染色质。
Curr Opin Genet Dev. 2005 Oct;15(5):507-14. doi: 10.1016/j.gde.2005.08.006.
8
Dual binding modes for an HMG domain from human HMGB2 on DNA.人HMGB2的HMG结构域与DNA的双重结合模式。
Biophys J. 2005 Jul;89(1):353-64. doi: 10.1529/biophysj.104.052068. Epub 2005 Apr 15.
9
Formation of loops in DNA under tension.DNA在张力作用下形成环。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021911. doi: 10.1103/PhysRevE.71.021911. Epub 2005 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验