Suppr超能文献

通过微观结构驱动的生长和重塑方法预测早期青光眼的筛板增厚

Lamina Cribrosa Thickening in Early Glaucoma Predicted by a Microstructure Motivated Growth and Remodeling Approach.

作者信息

Grytz Rafael, Sigal Ian A, Ruberti Jeffrey W, Meschke Günther, Downs J Crawford

机构信息

Ocular Biomechanics Laboratory, Devers Eye Institute, Portland, Oregon.

出版信息

Mech Mater. 2012 Jan 1;44:99-109. doi: 10.1016/j.mechmat.2011.07.004.

Abstract

Glaucoma is among the leading causes of blindness worldwide. The ocular disease is characterized by irreversible damage of the retinal ganglion cell axons at the level of the lamina cribrosa (LC). The LC is a porous, connective tissue structure whose function is believed to provide mechanical support to the axons as they exit the eye on their path from the retina to the brain. Early experimental glaucoma studies have shown that the LC remodels into a thicker, more posterior structure which incorporates more connective tissue after intraocular pressure (IOP) elevation. The process by which this occurs is unknown. Here we present a microstructure motivated growth and remodeling (G&R) formulation to explore a potential mechanism of these structural changes. We hypothesize that the mechanical strain experienced by the collagen fibrils in the LC stimulates the G&R response at the micro-scale. The proposed G&R algorithm controls collagen fibril synthesis/degradation and adapts the residual strains between collagen fibrils and the surrounding tissue to achieve biomechanical homeostasis. The G&R algorithm was applied to a generic finite element model of the human eye subjected to normal and elevated IOP. The G&R simulation underscores the biomechanical need for a LC at normal IOP. The numerical results suggest that IOP elevation leads to LC thickening due to an increase in collagen fibril mass, which is in good agreement with experimental observations in early glaucoma monkey eyes. This is the first study to demonstrate that a biomechanically-driven G&R mechanism can lead to the LC thickening observed in early experimental glaucoma.

摘要

青光眼是全球失明的主要原因之一。这种眼部疾病的特征是在筛板(LC)水平上视网膜神经节细胞轴突发生不可逆损伤。筛板是一种多孔的结缔组织结构,其功能被认为是在轴突从视网膜向大脑的路径上离开眼睛时为其提供机械支撑。早期的实验性青光眼研究表明,眼内压(IOP)升高后,筛板会重塑为更厚、更靠后的结构,其中包含更多的结缔组织。这种情况发生的过程尚不清楚。在这里,我们提出一种基于微观结构的生长和重塑(G&R)公式,以探索这些结构变化的潜在机制。我们假设筛板中胶原纤维所经历的机械应变会在微观尺度上刺激生长和重塑反应。所提出的G&R算法控制胶原纤维的合成/降解,并使胶原纤维与周围组织之间的残余应变相适应,以实现生物力学稳态。将G&R算法应用于正常眼压和高眼压下的人眼通用有限元模型。G&R模拟强调了正常眼压下筛板的生物力学需求。数值结果表明,眼压升高会导致筛板增厚,这是由于胶原纤维质量增加,这与早期青光眼猴眼的实验观察结果高度一致。这是第一项证明生物力学驱动的生长和重塑机制可导致早期实验性青光眼中观察到的筛板增厚的研究。

相似文献

2
Modeling the biomechanics of the lamina cribrosa microstructure in the human eye.
Acta Biomater. 2021 Oct 15;134:357-378. doi: 10.1016/j.actbio.2021.07.010. Epub 2021 Jul 8.
3
Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa.
Acta Biomater. 2017 Aug;58:278-290. doi: 10.1016/j.actbio.2017.05.042. Epub 2017 May 18.
4
The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach.
Biomech Model Mechanobiol. 2011 Jun;10(3):371-82. doi: 10.1007/s10237-010-0240-8. Epub 2010 Jul 14.
5
The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations.
Acta Biomater. 2017 Apr 15;53:123-139. doi: 10.1016/j.actbio.2016.12.054. Epub 2017 Jan 17.
6
Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma.
Invest Ophthalmol Vis Sci. 2003 Feb;44(2):623-37. doi: 10.1167/iovs.01-1282.
7
Long-term Remodeling Response in the Lamina Cribrosa Years after Intraocular Pressure Lowering by Suturelysis after Trabeculectomy.
Ophthalmol Glaucoma. 2024 May-Jun;7(3):298-307. doi: 10.1016/j.ogla.2024.01.003. Epub 2024 Jan 24.
8
Changes in the biomechanical response of the optic nerve head in early experimental glaucoma.
Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5675-84. doi: 10.1167/iovs.10-5411. Epub 2010 Jun 10.
9
Perspectives on biomechanical growth and remodeling mechanisms in glaucoma().
Mech Res Commun. 2012 Jun;42:92-106. doi: 10.1016/j.mechrescom.2012.01.007.
10
Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes.
Invest Ophthalmol Vis Sci. 2010 Jan;51(1):295-307. doi: 10.1167/iovs.09-4016. Epub 2009 Aug 20.

引用本文的文献

2
Lamina Cribrosa Insertions Into the Sclera Are Sparser, Narrower, and More Slanted in the Anterior Lamina.
Invest Ophthalmol Vis Sci. 2024 Apr 1;65(4):35. doi: 10.1167/iovs.65.4.35.
3
Fibrous finite element modeling of the optic nerve head region.
Acta Biomater. 2024 Feb;175:123-137. doi: 10.1016/j.actbio.2023.12.034. Epub 2023 Dec 24.
4
IOP and glaucoma damage: The essential role of optic nerve head and retinal mechanosensors.
Prog Retin Eye Res. 2024 Mar;99:101232. doi: 10.1016/j.preteyeres.2023.101232. Epub 2023 Dec 16.
5
Direct measurements of collagen fiber recruitment in the posterior pole of the eye.
Acta Biomater. 2024 Jan 1;173:135-147. doi: 10.1016/j.actbio.2023.11.013. Epub 2023 Nov 14.
6
Effects of Myopia and Glaucoma on the Neural Canal and Lamina Cribrosa Using Optical Coherence Tomography.
J Glaucoma. 2023 Jan 1;32(1):48-56. doi: 10.1097/IJG.0000000000002107. Epub 2022 Aug 19.
7
A minimal model of elastic instabilities in biological filament bundles.
J R Soc Interface. 2022 Sep;19(194):20220287. doi: 10.1098/rsif.2022.0287. Epub 2022 Sep 21.
8
Engineering a 3D hydrogel system to study optic nerve head astrocyte morphology and behavior.
Exp Eye Res. 2022 Jul;220:109102. doi: 10.1016/j.exer.2022.109102. Epub 2022 May 5.
9
Real-time imaging of optic nerve head collagen microstructure and biomechanics using instant polarized light microscopy.
Exp Eye Res. 2022 Apr;217:108967. doi: 10.1016/j.exer.2022.108967. Epub 2022 Jan 31.
10
Biomechanics of the optic nerve head and sclera in canine glaucoma: A brief review.
Vet Ophthalmol. 2021 Jul;24(4):316-325. doi: 10.1111/vop.12923. Epub 2021 Aug 17.

本文引用的文献

1
Perspectives on biological growth and remodeling.
J Mech Phys Solids. 2011 Apr 1;59(4):863-883. doi: 10.1016/j.jmps.2010.12.011.
2
Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer.
J Am Chem Soc. 2011 Mar 23;133(11):4073-8. doi: 10.1021/ja110098b. Epub 2011 Feb 24.
3
Consistent formulation of the growth process at the kinematic and constitutive level for soft tissues composed of multiple constituents.
Comput Methods Biomech Biomed Engin. 2012;15(5):547-61. doi: 10.1080/10255842.2010.548325. Epub 2011 May 24.
4
IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific models.
Invest Ophthalmol Vis Sci. 2011 Mar 30;52(3):1896-907. doi: 10.1167/iovs.10-5500. Print 2011 Mar.
7
Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism.
Exp Eye Res. 2011 Aug;93(2):133-40. doi: 10.1016/j.exer.2010.08.004. Epub 2010 Aug 11.
9
The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach.
Biomech Model Mechanobiol. 2011 Jun;10(3):371-82. doi: 10.1007/s10237-010-0240-8. Epub 2010 Jul 14.
10
A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis.
J Theor Biol. 2010 Aug 7;265(3):433-42. doi: 10.1016/j.jtbi.2010.04.023. Epub 2010 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验