Suppr超能文献

影响微螺钉种植体周围皮质骨内应力的因素:三维有限元研究。

Factors affecting stresses in cortical bone around miniscrew implants: a three-dimensional finite element study.

机构信息

Department of Orthodontics, University of Illinois at Chicago, Chicago, IL 60612, USA.

出版信息

Angle Orthod. 2012 Sep;82(5):875-80. doi: 10.2319/111011-696.1. Epub 2012 Mar 5.

Abstract

OBJECTIVE

To evaluate various types of stress in cortical bone around miniscrew implants using finite element analysis.

MATERIALS AND METHODS

Twenty-six three-dimensional assemblies of miniscrew models placed in alveolar bone blocks were constructed using Abaqus (Dassault Systèmes Simulia Corp, Providence, RI), a commercial finite element analysis software package. The model variables included implant design factors and bone-related factors. All miniscrew implants were loaded in the mesial direction with a linear force equal to 2 N. Peak von Mises and principal stress values in cortical bone were compared between the different models for each factor.

RESULTS

The results demonstrated that some factors affected the stresses in bone (implant diameter, implant head length, thread size, and elastic modulus of cancellous bone), while other factors did not (thread shape, thread pitch, and cortical bone thickness).

CONCLUSIONS

Miniscrew implant diameter, head length, and thread size as well as the elastic modulus of cancellous bone affect the stresses in cortical bone layer surrounding the miniscrew implant and may therefore affect its stability.

摘要

目的

通过有限元分析评估微型种植体周围皮质骨的各种类型的应力。

材料和方法

使用商业有限元分析软件 Abaqus(达索系统 Simulia 公司,普罗维登斯,RI)构建了 26 个置于牙槽骨块中的微型种植体模型的三维组件。模型变量包括种植体设计因素和与骨相关的因素。所有微型种植体均在近中方向加载 2N 的线性力。针对每个因素,对不同模型中皮质骨中的峰值 von Mises 应力和主应力值进行了比较。

结果

结果表明,某些因素(种植体直径、种植体头部长度、螺纹尺寸和松质骨弹性模量)会影响骨中的应力,而其他因素(螺纹形状、螺纹间距和皮质骨厚度)则不会。

结论

微型种植体的直径、头部长度和螺纹尺寸以及松质骨的弹性模量会影响微型种植体周围皮质骨层的应力,从而可能影响其稳定性。

相似文献

1
Factors affecting stresses in cortical bone around miniscrew implants: a three-dimensional finite element study.
Angle Orthod. 2012 Sep;82(5):875-80. doi: 10.2319/111011-696.1. Epub 2012 Mar 5.
2
Optimized orthodontic palatal miniscrew implant insertion angulation: a finite element analysis.
Int J Oral Maxillofac Implants. 2015 Jan-Feb;30(1):e1-9. doi: 10.11607/jomi.3636. Epub 2014 Sep 26.
3
Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement.
Am J Orthod Dentofacial Orthop. 2011 Jan;139(1):e59-71. doi: 10.1016/j.ajodo.2010.09.020.
4
[Influence of thread shapes of custommade root-analogue implants on stress distribution of peri-implant bone: A three-dimensional finite element analysis].
Beijing Da Xue Xue Bao Yi Xue Ban. 2019 Dec 18;51(6):1130-1137. doi: 10.19723/j.issn.1671-167X.2019.06.027.
5
Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch.
Comput Methods Programs Biomed. 2020 Apr;187:105258. doi: 10.1016/j.cmpb.2019.105258. Epub 2019 Dec 2.
8
Finite element analysis of miniscrew implants used for orthodontic anchorage.
Am J Orthod Dentofacial Orthop. 2012 Apr;141(4):468-76. doi: 10.1016/j.ajodo.2011.11.012.

引用本文的文献

3
Success rates of single-thread and double-thread orthodontic miniscrews in the maxillary arch.
BMC Oral Health. 2024 Feb 5;24(1):191. doi: 10.1186/s12903-024-03866-x.
4
Optimization Analysis of Two-Factor Continuous Variable between Thread Depth and Pitch of Microimplant under Toque Force.
Comput Math Methods Med. 2022 Jun 20;2022:2119534. doi: 10.1155/2022/2119534. eCollection 2022.
6
Effect of thread depth and thread pitch on the primary stability of miniscrews receiving a torque load : A finite element analysis.
J Orofac Orthop. 2023 Mar;84(2):79-87. doi: 10.1007/s00056-021-00351-w. Epub 2021 Sep 28.
7
Can maxilla and mandible bone quality explain differences in orthodontic mini-implant failures?
Biomater Investig Dent. 2021 Jan 8;8(1):1-9. doi: 10.1080/26415275.2020.1863155.
9
Investigation of the optimal design of orthodontic mini-implants based on the primary stability: A finite element analysis.
J Dent Res Dent Clin Dent Prospects. 2019 Spring;13(2):85-89. doi: 10.15171/joddd.2019.013. Epub 2019 Aug 14.

本文引用的文献

1
Effects of miniscrew orientation on implant stability and resistance to failure.
Am J Orthod Dentofacial Orthop. 2010 Jan;137(1):91-9. doi: 10.1016/j.ajodo.2007.12.034.
2
Optimal palatal configuration for miniscrew applications.
Angle Orthod. 2010 Jan;80(1):145-52. doi: 10.2319/122908-662.1.
3
Pitch and longitudinal fluting effects on the primary stability of miniscrew implants.
Angle Orthod. 2009 Nov;79(6):1156-61. doi: 10.2319/103108-554R.1.
4
Stability of immediately loaded 3- and 6-mm miniscrew implants in beagle dogs--a pilot study.
Am J Orthod Dentofacial Orthop. 2009 Aug;136(2):251-9. doi: 10.1016/j.ajodo.2008.03.016.
5
Factors associated with initial stability of miniscrews for orthodontic treatment.
Am J Orthod Dentofacial Orthop. 2009 Aug;136(2):236-42. doi: 10.1016/j.ajodo.2007.07.030.
6
Effect of screw diameter on orthodontic skeletal anchorage.
Am J Orthod Dentofacial Orthop. 2009 Aug;136(2):224-9. doi: 10.1016/j.ajodo.2007.07.031.
7
Mechanical anisotropy of orthodontic mini-implants.
Int J Oral Maxillofac Surg. 2009 Sep;38(9):972-7. doi: 10.1016/j.ijom.2009.05.009. Epub 2009 Jun 25.
8
Numerical analyses of biomechanical behavior of various orthodontic anchorage implants.
J Orofac Orthop. 2009 Mar;70(2):115-27. doi: 10.1007/s00056-009-0817-y. Epub 2009 Mar 26.
9
Bone stress for a mini-implant close to the roots of adjacent teeth--3D finite element analysis.
Int J Oral Maxillofac Surg. 2009 Apr;38(4):363-8. doi: 10.1016/j.ijom.2009.02.011. Epub 2009 Mar 9.
10
Numerical/experimental analysis of the stress field around miniscrews for orthodontic anchorage.
Eur J Orthod. 2009 Feb;31(1):12-20. doi: 10.1093/ejo/cjn066. Epub 2008 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验