Suppr超能文献

应用 PCA 和 SIMCA 统计分析 FT-IR 光谱对具有环境来源的不同渣类型进行分类和鉴定。

Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin.

机构信息

Department Soil Science/Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Bochum, Germany.

出版信息

Environ Sci Technol. 2012 Apr 3;46(7):3964-72. doi: 10.1021/es204187r. Epub 2012 Mar 16.

Abstract

In the past, different slag materials were often used for landscaping and construction purposes or simply dumped. Nowadays German environmental laws strictly control the use of slags, but there is still a remaining part of 35% which is uncontrolled dumped in landfills. Since some slags have high heavy metal contents and different slag types have typical chemical and physical properties that will influence the risk potential and other characteristics of the deposits, an identification of the slag types is needed. We developed a FT-IR-based statistical method to identify different slags classes. Slags samples were collected at different sites throughout various cities within the industrial Ruhr area. Then, spectra of 35 samples from four different slags classes, ladle furnace (LF), blast furnace (BF), oxygen furnace steel (OF), and zinc furnace slags (ZF), were determined in the mid-infrared region (4000-400 cm(-1)). The spectra data sets were subject to statistical classification methods for the separation of separate spectral data of different slag classes. Principal component analysis (PCA) models for each slag class were developed and further used for soft independent modeling of class analogy (SIMCA). Precise classification of slag samples into four different slag classes were achieved using two different SIMCA models stepwise. At first, SIMCA 1 was used for classification of ZF as well as OF slags over the total spectral range. If no correct classification was found, then the spectrum was analyzed with SIMCA 2 at reduced wavenumbers for the classification of LF as well as BF spectra. As a result, we provide a time- and cost-efficient method based on FT-IR spectroscopy for processing and identifying large numbers of environmental slag samples.

摘要

过去,不同的炉渣材料通常用于景观美化和建筑目的,或者简单地倾倒。如今,德国环境法严格控制炉渣的使用,但仍有 35%的剩余部分未经控制地倾倒在垃圾填埋场中。由于一些炉渣含有高重金属含量,并且不同的炉渣类型具有典型的化学和物理特性,这将影响沉积物的风险潜力和其他特性,因此需要识别炉渣类型。我们开发了一种基于傅里叶变换红外光谱(FT-IR)的统计方法来识别不同的炉渣类型。在鲁尔工业区的各个城市的不同地点收集了炉渣样本。然后,在中红外区域(4000-400 cm(-1))确定了来自四个不同炉渣类型(钢包炉(LF)、高炉(BF)、氧气炉钢(OF)和锌炉渣(ZF))的 35 个样品的光谱。将光谱数据集应用于统计分类方法,以分离不同炉渣类型的单独光谱数据。为每个炉渣类型开发了主成分分析(PCA)模型,并进一步用于软独立建模分类分析(SIMCA)。使用两种不同的 SIMCA 模型逐步实现了对炉渣样品的精确分类,分别为 4 种不同的炉渣类型。首先,SIMCA1 用于在全光谱范围内对 ZF 和 OF 炉渣进行分类。如果未找到正确的分类,则在减少波数的情况下用 SIMCA2 分析光谱,以对 LF 和 BF 光谱进行分类。结果,我们提供了一种基于傅里叶变换红外光谱的高效、快速、低成本的方法,用于处理和识别大量环境炉渣样本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验