Suppr超能文献

利用局部变量选择提高中文近红外光谱的分类准确率

Improving the Classification Accuracy for Near-Infrared Spectroscopy of Chinese Using Local Variable Selection.

作者信息

Zhu Lianqing, Chang Haitao, Zhou Qun, Wang Zhongyu

机构信息

Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China.

School of Instrumentation Science & Opto-Electronics Engineering, Beihang University, Beijing 100191, China.

出版信息

J Anal Methods Chem. 2018 Jan 29;2018:5237308. doi: 10.1155/2018/5237308. eCollection 2018.

Abstract

In order to improve the classification accuracy of Chinese using near-infrared spectroscopy, a novel local variable selection strategy is thus proposed. Combining the strengths of the local algorithm and interval partial least squares, the spectra data have firstly been divided into several pairs of classes in sample direction and equidistant subintervals in variable direction. Then, a local classification model has been built, and the most proper spectral region has been selected based on the new evaluation criterion considering both classification error rate and best predictive ability under the leave-one-out cross validation scheme for each pair of classes. Finally, each observation can be assigned to belong to the class according to the statistical analysis of classification results of the local classification model built on selected variables. The performance of the proposed method was demonstrated through near-infrared spectra of cultivated or wild , which are collected from 8 geographical origins in 5 provinces of China. For comparison, soft independent modelling of class analogy and partial least squares discriminant analysis methods are, respectively, employed as the classification model. Experimental results showed that classification performance of the classification model with local variable selection was obvious better than that without variable selection.

摘要

为了提高近红外光谱法对中药材的分类准确率,提出了一种新颖的局部变量选择策略。结合局部算法和区间偏最小二乘法的优势,首先在样本方向上将光谱数据划分为几对类别,并在变量方向上划分为等距子区间。然后,建立局部分类模型,并基于新的评估标准选择最合适的光谱区域,该评估标准在留一法交叉验证方案下考虑了每对类别的分类错误率和最佳预测能力。最后,根据基于所选变量建立的局部分类模型的分类结果的统计分析,将每个观测值分配到相应类别。通过采集自中国5个省份8个地理来源的栽培或野生中药材的近红外光谱验证了该方法的性能。为作比较,分别采用类相关软独立建模法和偏最小二乘判别分析法作为分类模型。实验结果表明,具有局部变量选择的分类模型的分类性能明显优于无变量选择的分类模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/062b/5830282/3cfe84cdf810/JAMC2018-5237308.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验