Suppr超能文献

采用新型九点平衡运动编码方案的改进型磁共振相位对比速度测量法,提高了对涡流效应的鲁棒性。

Improved MR phase-contrast velocimetry using a novel nine-point balanced motion-encoding scheme with increased robustness to eddy current effects.

机构信息

Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.

出版信息

Magn Reson Med. 2013 Jan;69(1):48-61. doi: 10.1002/mrm.24226. Epub 2012 Mar 5.

Abstract

Phase-contrast MRI (PC-MRI) velocimetry is a noninvasive, high-resolution motion assessment tool. However, high motion sensitivity requires strong motion-encoding magnetic gradients, making phase-contrast-MRI prone to baseline shift artifacts due to the generation of eddy currents. In this study, we propose a novel nine-point balanced velocity-encoding strategy, designed to be more accurate in the presence of strong and rapidly changing gradients. The proposed method was validated using a rotating phantom, and its robustness and precision were explored and compared with established approaches through computer simulations and in vivo experiments. Computer simulations yielded a 39-57% improvement in velocity-noise ratio (corresponding to a 27-33% reduction in measurement error), depending on which method was used for comparison. Moreover, in vivo experiments confirmed this by demonstrating a 26-53% reduction in accumulated velocity error over the R-R interval. The nine-point balanced phase-contrast-MRI-encoding strategy is likely useful for settings where high spatial and temporal resolution and/or high motion sensitivity is required, such as in high-resolution rodent myocardial tissue phase mapping.

摘要

相位对比磁共振成像(PC-MRI)速度测量是一种非侵入性、高分辨率的运动评估工具。然而,高运动敏感性需要强的运动编码磁场梯度,这使得相位对比-MRI 容易由于涡流的产生而出现基线偏移伪影。在这项研究中,我们提出了一种新的九点平衡速度编码策略,旨在在存在强且快速变化的梯度时更准确。该方法使用旋转体模进行了验证,并通过计算机模拟和体内实验探索了其稳健性和精度,并与现有方法进行了比较。计算机模拟的结果表明,速度噪声比提高了 39-57%(对应于测量误差降低了 27-33%),具体取决于所使用的比较方法。此外,体内实验证实了这一点,即在 R-R 间隔内累积速度误差降低了 26-53%。九点平衡相位对比-MRI 编码策略可能适用于需要高空间和时间分辨率和/或高运动敏感性的情况,例如在高分辨率啮齿动物心肌组织相位映射中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验