European Synchrotron Radiation Facility, 6, Rue Jules Horowitz, BP-220, Grenoble, F-38043, France.
J Am Chem Soc. 2012 Mar 21;134(11):5036-9. doi: 10.1021/ja2114163. Epub 2012 Mar 13.
When materials are reduced to the nanoscale, their structure and reactivity can deviate greatly from the bulk or extended surface case. Using the archetypal example of supported Pt nanoparticles (ca. 2 nm diameter, 1 wt % Pt on Al(2)O(3)) catalyzing CO oxidation to CO(2) during cyclic redox operation, we show that high energy X-ray total scattering, used with subsecond time resolution, can yield detailed, valuable insights into the dynamic behavior of nanoscale systems. This approach reveals how these nanoparticles respond to their environment and the nature of active sites being formed and consumed within the catalytic process. Specific insight is gained into the structure of the highly active Pt surface oxide that formed on the nanoparticles during catalysis.
当材料被缩小到纳米尺度时,它们的结构和反应性可能会与大块或扩展表面的情况有很大的不同。使用负载型 Pt 纳米粒子(约 2nm 直径,1wt%Pt 在 Al(2)O(3)上)作为典型的例子,在循环氧化还原操作中催化 CO 氧化为 CO(2),我们表明,使用亚秒时间分辨率的高能量 X 射线总散射,可以深入了解纳米尺度系统的动态行为。这种方法揭示了这些纳米粒子如何对其环境做出响应,以及在催化过程中形成和消耗的活性位的性质。我们还深入了解了在催化过程中纳米粒子上形成的高活性 Pt 表面氧化物的结构。