Suppr超能文献

具有多个陷阱的模块化无标度网络中的随机游走。

Random walks in modular scale-free networks with multiple traps.

作者信息

Zhang Zhongzhi, Yang Yihang, Lin Yuan

机构信息

School of Computer Science, Fudan University, Shanghai 200433, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011106. doi: 10.1103/PhysRevE.85.011106. Epub 2012 Jan 3.

Abstract

Extensive empirical investigation has shown that a plethora of real networks synchronously exhibit scale-free and modular structure and it is thus of great importance to uncover the effects of these two striking properties on various dynamical processes occurring on such networks. In this paper, we examine two cases of random walks performed on a class of modular scale-free networks with multiple traps located at several given nodes. We first derive a formula of the mean first-passage time (MFPT) for a general network, which is the mean of the expected time to absorption originating from a specific node, averaged over all nontrap starting nodes. Although the computation is complex, the expression of the formula is exact; moreover, the computational approach and procedure are independent of the number and position of the traps. We then determine analytically the MFPT for the two random walks being considered. The obtained analytical results are in complete agreement with the numerical ones. Our results show that the number and location of traps play an important role in the behavior of the MFPT, since for both cases the MFPT grows as a power-law function of the number of nodes, but their exponents are quite different. We demonstrate that the root of the difference in the behavior of MFPT is attributed to the modular and scale-free topologies of the networks. This work can deepen the understanding of diffusion on networks with modular and scale-free architecture and motivate relevant studies for random walks running on complex random networks with multiple traps.

摘要

广泛的实证研究表明,大量真实网络同时呈现出无标度和模块化结构,因此揭示这两个显著特性对这类网络上发生的各种动力学过程的影响至关重要。在本文中,我们研究了在一类模块化无标度网络上进行的随机游走的两种情况,这类网络在几个给定节点处设有多个陷阱。我们首先推导出一般网络的平均首次通过时间(MFPT)公式,即从特定节点出发到被吸收的预期时间的平均值,是对所有非陷阱起始节点进行平均。虽然计算复杂,但公式的表达式是精确的;此外,计算方法和过程与陷阱的数量和位置无关。然后,我们通过解析确定了所考虑的两种随机游走的MFPT。得到的解析结果与数值结果完全一致。我们的结果表明,陷阱的数量和位置在MFPT的行为中起着重要作用,因为对于这两种情况,MFPT都作为节点数量的幂律函数增长,但其指数有很大不同。我们证明,MFPT行为差异的根源在于网络的模块化和无标度拓扑结构。这项工作可以加深对具有模块化和无标度架构的网络上扩散的理解,并推动对在具有多个陷阱的复杂随机网络上进行随机游走的相关研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验