Institut für Allgemeine Botanik, Johannes-Gutenberg-Universität Mainz, Mainz, Germany.
Langmuir. 2012 Apr 3;28(13):5810-8. doi: 10.1021/la204970a. Epub 2012 Mar 26.
Light-harvesting complex (LHCII) of the photosynthetic apparatus in plants is attached to type-II core-shell CdTe/CdSe/ZnS nanocrystals (quantum dots, QD) exhibiting an absorption band at 710 nm and carrying a dihydrolipoic acid coating for water solubility. LHCII stays functional upon binding to the QD surface and enhances the light utilization of the QDs significantly, similar to its light-harvesting function in photosynthesis. Electronic excitation energy transfer of about 50% efficiency is shown by donor (LHCII) fluorescence quenching as well as sensitized acceptor (QD) emission and corroborated by time-resolved fluorescence measurements. The energy transfer efficiency is commensurable with the expected efficiency calculated according to Förster theory on the basis of the estimated donor-acceptor separation. Light harvesting is particularly efficient in the red spectral domain where QD absorption is relatively low. Excitation over the entire visible spectrum is further improved by complementing the biological pigments in LHCII with a dye attached to the apoprotein; the dye has been chosen to absorb in the "green gap" of the LHCII absorption spectrum and transfers its excitation energy ultimately to QD. This is the first report of a biological light-harvesting complex serving an inorganic semiconductor nanocrystal. Due to the charge separation between the core and the shell in type-II QDs the presented LHCII-QD hybrid complexes are potentially interesting for sensitized charge-transfer and photovoltaic applications.
植物光合作用色素捕光复合物(LHCII)附着在具有 710nm 吸收带的 II 型核壳结构 CdTe/CdSe/ZnS 纳米晶体(量子点,QD)上,同时带有二氢硫辛酸涂层以增加水溶性。LHCII 在与 QD 表面结合后仍保持其功能,并显著提高 QD 的光利用率,类似于其在光合作用中的光捕获功能。通过供体(LHCII)荧光猝灭以及敏化受体(QD)发射来证明电子激发能量转移效率约为 50%,并通过时间分辨荧光测量得到证实。能量转移效率与根据Förster 理论基于估计的供体-受体分离计算得出的预期效率相当。在 QD 吸收相对较低的红光光谱域中,光捕获特别有效。通过将附着在脱辅基蛋白上的染料与 LHCII 中的生物色素互补,进一步改善了整个可见光谱的激发;选择该染料是因为其在 LHCII 吸收光谱的“绿光间隙”中吸收,并将其激发能量最终转移到 QD。这是第一个报道生物光捕获复合物为无机半导体纳米晶体提供服务的报告。由于 II 型 QD 中的核和壳之间存在电荷分离,因此所提出的 LHCII-QD 杂化复合物在敏化电荷转移和光伏应用方面具有潜在的应用价值。