Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
J Chem Phys. 2012 Mar 7;136(9):094702. doi: 10.1063/1.3687676.
We studied the reaction kinetics of sulfur oxidation on the Pd(100) surface by in situ high resolution x-ray photoelectron spectroscopy and ab initio density functional calculations. Isothermal oxidation experiments were performed between 400 and 500 K for small amounts (~0.02 ML) of preadsorbed sulfur, with oxygen in large excess. The main stable reaction intermediate found on the surface is SO(4), with SO(2) and SO(3) being only present in minor amounts. Density-functional calculations depict a reaction energy profile, which explains the sequential formation of SO(2), SO(3), and eventually SO(4), also highlighting that the in-plane formation of SO from S and O adatoms is the rate limiting step. From the experiments we determined the activation energy of the rate limiting step to be 85 ± 6 kJ mol(-1) by Arrhenius analysis, matching the calculated endothermicity of the SO formation.
我们通过原位高分辨率 X 射线光电子能谱和从头算密度泛函理论计算研究了 Pd(100)表面上硫氧化的反应动力学。在 400 至 500 K 的温度范围内,对于预吸附的少量 (~0.02 ML)硫和大量的氧气进行等温氧化实验。在表面上发现的主要稳定反应中间体是 SO(4),而 SO(2)和 SO(3)仅以少量存在。密度泛函理论计算描绘了一个反应能量曲线,解释了 SO(2)、SO(3)和最终 SO(4)的顺序形成,同时也强调了 S 和 O 原子吸附物平面内形成 SO 是速率限制步骤。通过实验,我们通过 Arrhenius 分析确定了速率限制步骤的活化能为 85 ± 6 kJ mol(-1),与计算出的 SO 形成的吸热性相匹配。