Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany.
Phys Chem Chem Phys. 2012 Apr 21;14(15):5090-9. doi: 10.1039/c2cp40288b. Epub 2012 Mar 8.
Ionic liquids are of high interest for the development of safe electrolytes in modern electrochemical cells, such as batteries, supercapacitors and dye-sensitised solar cells. However, electrochemical applications of ionic liquids are still hindered by the limited understanding of the interface between electrode materials and ionic liquids. In this article, we first review the state of the art in both experiment and theory. Then we illustrate some general trends by taking the interface between the extremely pure ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and an Au(111) electrode as an example. For the study of this interface, electrochemical impedance spectroscopy was combined with in situ STM and in situ AFM techniques. In addition, we present new results for the temperature dependence of the interfacial capacitance and dynamics. Since the interfacial dynamics are characterised by different processes taking place on different time scales, the temperature dependence of the dynamics can only be reliably studied by recording and carefully analysing broadband capacitance spectra. Single-frequency experiments may lead to artefacts in the temperature dependence of the interfacial capacitance. We demonstrate that the fast capacitive process exhibits a Vogel-Fulcher-Tamman temperature dependence, since its time scale is governed by the ionic conductivity of the ionic liquid. In contrast, the slower capacitive process appears to be Arrhenius activated. This suggests that the time scale of this process is determined by a temperature-independent barrier, which may be related to structural reorganisations of the Au surface and/or to charge redistributions in the strongly bound innermost ion layer.
离子液体在开发现代电化学电池(如电池、超级电容器和染料敏化太阳能电池)中的安全电解质方面引起了极大的关注。然而,离子液体的电化学应用仍然受到对电极材料和离子液体之间界面的有限理解的限制。在本文中,我们首先回顾了实验和理论方面的最新进展。然后,我们以非常纯净的离子液体 1-丁基-1-甲基吡咯烷六氟磷酸酯与 Au(111)电极之间的界面为例,说明了一些一般趋势。为了研究这个界面,我们将电化学阻抗谱与原位 STM 和原位 AFM 技术结合使用。此外,我们还提出了界面电容和动力学随温度变化的新结果。由于界面动力学的特点是不同过程在不同的时间尺度上发生,因此只有通过记录和仔细分析宽带电容谱才能可靠地研究动力学的温度依赖性。单频实验可能会导致界面电容随温度变化的人为现象。我们证明,快速电容过程表现出 Vogel-Fulcher-Tammann 温度依赖性,因为其时间尺度由离子液体的离子电导率决定。相比之下,较慢的电容过程似乎是阿仑尼乌斯激活的。这表明该过程的时间尺度由与 Au 表面结构重排和/或强结合内层离子层的电荷重新分布相关的温度独立势垒决定。