Suppr超能文献

使用高斯滤波和模糊聚类对彗星试验图像进行自动分割。

Automated segmentation of comet assay images using Gaussian filtering and fuzzy clustering.

机构信息

University of Naples "Federico II", Via Claudio 21, 80100 Naples, Italy.

出版信息

Med Biol Eng Comput. 2012 May;50(5):523-32. doi: 10.1007/s11517-012-0882-z. Epub 2012 Mar 9.

Abstract

Comet assay is one of the most popular tests for the detection of DNA damage at single cell level. In this study, an algorithm for comet assay analysis has been proposed, aiming to minimize user interaction and providing reproducible measurements. The algorithm comprises two-steps: (a) comet identification via Gaussian pre-filtering and morphological operators; (b) comet segmentation via fuzzy clustering. The algorithm has been evaluated using comet images from human leukocytes treated with a commonly used DNA damaging agent. A comparison of the proposed approach with a commercial system has been performed. Results show that fuzzy segmentation can increase overall sensitivity, giving benefits in bio-monitoring studies where weak genotoxic effects are expected.

摘要

彗星试验是检测单细胞水平 DNA 损伤最常用的方法之一。本研究提出了一种彗星试验分析算法,旨在减少用户交互并提供可重复的测量。该算法包括两步:(a) 通过高斯预滤波器和形态运算符进行彗星识别;(b) 通过模糊聚类进行彗星分割。该算法使用经常用作 DNA 损伤剂处理的人白细胞的彗星图像进行了评估。并与商业系统进行了比较。结果表明,模糊分割可以提高整体灵敏度,在预期存在较弱遗传毒性作用的生物监测研究中具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验