Li Qifu, Zhou Dong
Department of Neurology, Affiliated Hospital of Hainan Medical College, Haikou 570102, China.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2012 Feb;29(1):179-83.
This paper generalizes the seizures characterized with paroxysmal generalized spike and wave discharges (GSWDs) in the EEG. Recent studies showed that GSWDs disrupt specific neural networks only rather than the entire brain homogenously. Simultaneous EEG and functional MRI (EEG-fMRDI) provides a high spatiotemporal resolution method for uncovering the regions of the brain showing changes in metabolism and blood flow during epileptic activity. Human EEG-fMRI studies to date have revealed the blood oxygenation level dependent (BOLD) signal changes in response to GSWDs in some specific brain regions. Most studies have noted similar BOLD signals decrease in the bilateral cortical regions including frontal, frontal-parietal, posterior cingulated and precuneus cortex, as well as in the basal ganglia, and BOLD signals increase in the bilateral thalamic. Further studies demonstrated that BOLD signals in different regions were dynamic changes in the time course of GSWDs and BOLD changes in the cortical areas occurred before in the thalamus. These cortical-subcortical structures may form the neural networks associated with GSWDs generation and maintenance. More sophisticated analytic techniques will be developed to explore the BOLD time-course of GSWDs and identify the brain structures involved in seizure onset and discharges propagation respectively. The sub-network associated with different behavioral deficits between interical and ictal GSWDs, and the different subtypes of generalized seizures will be further studied. The functional connectivity of the nodes of the neural network of GSWDs can also be further investigated. A better understanding of the neural network responsible for GSWDs generation may help to develop new therapeutic interventions.
本文对脑电图中以阵发性全脑棘慢波放电(GSWDs)为特征的癫痫发作进行了概括。最近的研究表明,GSWDs仅扰乱特定神经网络,而非均匀地影响整个大脑。同步脑电图和功能磁共振成像(EEG-fMRDI)提供了一种高时空分辨率方法,用于揭示癫痫发作活动期间大脑中代谢和血流发生变化的区域。迄今为止,人类EEG-fMRI研究已经揭示了一些特定脑区对GSWDs产生的血氧水平依赖(BOLD)信号变化。大多数研究指出,双侧皮质区域,包括额叶、额顶叶、后扣带回和楔前叶皮质以及基底神经节的BOLD信号下降,而双侧丘脑的BOLD信号增加。进一步的研究表明,不同区域的BOLD信号在GSWDs的时间进程中是动态变化的,皮质区域的BOLD变化先于丘脑出现。这些皮质-皮质下结构可能构成了与GSWDs产生和维持相关的神经网络。将开发更复杂的分析技术来探索GSWDs的BOLD时间进程,并分别识别癫痫发作起始和放电传播所涉及的脑结构。与发作间期和发作期GSWDs之间不同行为缺陷以及全身性癫痫不同亚型相关的子网络将得到进一步研究。GSWDs神经网络节点的功能连接性也可进一步研究。更好地理解负责GSWDs产生的神经网络可能有助于开发新的治疗干预措施。