Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo, Kobe 650-0047, Japan.
Dev Growth Differ. 2012 Apr;54(3):349-57. doi: 10.1111/j.1440-169X.2012.01329.x. Epub 2012 Mar 8.
Embryonic stem (ES) cells have been successfully used over the past decade to generate specific types of neuronal cells. In addition to its value for regenerative medicine, ES cell culture also provides versatile experimental systems for analyzing early neural development. These systems are complimentary to conventional animal models, particularly because they allow unique constructive (synthetic) approaches, for example, step-wise addition of components. Here we review the ability of ES cells to generate not only specific neuronal populations but also functional neural tissues by recapitulating microenvironments in early mammalian development. In particular, we focus on cerebellar neurogenesis from mouse ES cells, and explain the basic ideas for positional information and self-formation of polarized neuroepithelium. Basic research on developmental signals has fundamentally contributed to substantial progress in stem cell technology. We also discuss how in vitro model systems using ES cells can shed new light on the mechanistic understanding of organogenesis, taking an example of recent progress in self-organizing histogenesis.
胚胎干细胞(ES 细胞)在过去十年中已成功用于生成特定类型的神经元细胞。除了在再生医学方面的价值外,ES 细胞培养还为分析早期神经发育提供了多功能的实验系统。这些系统与传统的动物模型相辅相成,特别是因为它们允许使用独特的构建(合成)方法,例如逐步添加成分。在这里,我们回顾了 ES 细胞通过再现早期哺乳动物发育中的微环境来生成不仅是特定神经元群体而且是功能性神经组织的能力。特别是,我们专注于从小鼠 ES 细胞生成小脑神经发生,并解释了位置信息和极化神经上皮的自形成的基本思想。对发育信号的基础研究为干细胞技术的重大进展做出了根本性贡献。我们还讨论了如何使用 ES 细胞的体外模型系统如何通过最近在自我组织组织发生方面的进展为例,为器官发生的机制理解提供新的见解。