Suppr超能文献

锚重复序列的力学各向异性。

Mechanical anisotropy of ankyrin repeats.

机构信息

Center for Biologically Inspired Materials and Material Systems and Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA.

出版信息

Biophys J. 2012 Mar 7;102(5):1118-26. doi: 10.1016/j.bpj.2012.01.046. Epub 2012 Mar 6.

Abstract

Red blood cells are frequently deformed and their cytoskeletal proteins such as spectrin and ankyrin-R are repeatedly subjected to mechanical forces. While the mechanics of spectrin was thoroughly investigated in vitro and in vivo, little is known about the mechanical behavior of ankyrin-R. In this study, we combine coarse-grained steered molecular dynamics simulations and atomic force spectroscopy to examine the mechanical response of ankyrin repeats (ARs) in a model synthetic AR protein NI6C, and in the D34 fragment of native ankyrin-R when these proteins are subjected to various stretching geometry conditions. Our steered molecular dynamics results, supported by AFM measurements, reveal an unusual mechanical anisotropy of ARs: their mechanical stability is greater when their unfolding is forced to propagate from the N-terminus toward the C-terminus (repeats unfold at ~60 pN), as compared to the unfolding in the opposite direction (unfolding force ∼ 30 pN). This anisotropy is also reflected in the complex refolding behavior of ARs. The origin of this unfolding and refolding anisotropy is in the various numbers of native contacts that are broken and formed at the interfaces between neighboring repeats depending on the unfolding/refolding propagation directions. Finally, we discuss how these complex mechanical properties of ARs in D34 may affect its behavior in vivo.

摘要

红细胞经常发生变形,其细胞骨架蛋白如血影蛋白和锚蛋白-R 也反复受到机械力的作用。虽然血影蛋白的力学性质已经在体外和体内进行了彻底的研究,但锚蛋白-R 的力学行为却知之甚少。在这项研究中,我们结合粗粒导向分子动力学模拟和原子力光谱法来研究模型合成 AR 蛋白 NI6C 中的锚蛋白重复序列 (ARs) 以及天然锚蛋白-R 的 D34 片段在受到不同拉伸几何形状条件时的机械响应。我们的导向分子动力学结果得到了 AFM 测量的支持,揭示了 ARs 的异常机械各向异性:与相反方向的展开相比(展开力约为 30 pN),当它们的展开从 N 端被迫向 C 端传播时(展开力约为 60 pN),它们的机械稳定性更大。这种各向异性也反映在 ARs 的复杂折叠行为中。这种展开和折叠各向异性的起源在于取决于展开/折叠传播方向的相邻重复之间的界面处断裂和形成的天然接触的数量不同。最后,我们讨论了 D34 中 ARs 的这些复杂机械特性如何影响其在体内的行为。

相似文献

1
Mechanical anisotropy of ankyrin repeats.
Biophys J. 2012 Mar 7;102(5):1118-26. doi: 10.1016/j.bpj.2012.01.046. Epub 2012 Mar 6.
3
Mutation of conserved histidines alters tertiary structure and nanomechanics of consensus ankyrin repeats.
J Biol Chem. 2012 Jun 1;287(23):19115-21. doi: 10.1074/jbc.M112.365569. Epub 2012 Apr 18.
4
Mechanical unfolding of an ankyrin repeat protein.
Biophys J. 2010 Apr 7;98(7):1294-301. doi: 10.1016/j.bpj.2009.12.4287.
5
Stepwise unfolding of ankyrin repeats in a single protein revealed by atomic force microscopy.
Biophys J. 2006 Feb 15;90(4):L30-2. doi: 10.1529/biophysj.105.078436. Epub 2005 Dec 30.
6
Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.
Biophys Chem. 2015 May-Jun;200-201:1-8. doi: 10.1016/j.bpc.2015.03.007. Epub 2015 Mar 28.
7
Unfolding a linker between helical repeats.
J Mol Biol. 2005 Jun 10;349(3):638-47. doi: 10.1016/j.jmb.2005.03.086. Epub 2005 Apr 15.
8
Cooperativity in forced unfolding of tandem spectrin repeats.
Biophys J. 2003 Jan;84(1):533-44. doi: 10.1016/S0006-3495(03)74872-3.
9
Mechanical Unfolding and Refolding of Single Membrane Proteins by Atomic Force Microscopy.
Methods Mol Biol. 2020;2127:359-372. doi: 10.1007/978-1-0716-0373-4_23.

引用本文的文献

2
Unraveling the Mechanical Unfolding Pathways of a Multidomain Protein: Phosphoglycerate Kinase.
Biophys J. 2018 Jul 3;115(1):46-58. doi: 10.1016/j.bpj.2018.05.028.
3
SOP-GPU: influence of solvent-induced hydrodynamic interactions on dynamic structural transitions in protein assemblies.
J Comput Chem. 2016 Jun 30;37(17):1537-51. doi: 10.1002/jcc.24368. Epub 2016 Mar 26.
4
Mapping Mechanical Force Propagation through Biomolecular Complexes.
Nano Lett. 2015 Nov 11;15(11):7370-6. doi: 10.1021/acs.nanolett.5b02727. Epub 2015 Aug 19.
5
Force-induced remodelling of proteins and their complexes.
Curr Opin Struct Biol. 2015 Feb;30:89-99. doi: 10.1016/j.sbi.2015.02.001. Epub 2015 Feb 21.
6
The molecular mechanism underlying mechanical anisotropy of the protein GB1.
Biophys J. 2012 Dec 5;103(11):2361-8. doi: 10.1016/j.bpj.2012.10.035.

本文引用的文献

1
Cysteine shotgun-mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8269-74. doi: 10.1073/pnas.1018887108. Epub 2011 Apr 28.
2
Measuring protein mechanics by atomic force microscopy.
CSH Protoc. 2007 Dec 1;2007:pdb.prot4901. doi: 10.1101/pdb.prot4901.
3
Full reconstruction of a vectorial protein folding pathway by atomic force microscopy and molecular dynamics simulations.
J Biol Chem. 2010 Dec 3;285(49):38167-72. doi: 10.1074/jbc.M110.179697. Epub 2010 Sep 24.
4
Fast and forceful refolding of stretched alpha-helical solenoid proteins.
Biophys J. 2010 Jun 16;98(12):3086-92. doi: 10.1016/j.bpj.2010.02.054.
5
Designed biomaterials to mimic the mechanical properties of muscles.
Nature. 2010 May 6;465(7294):69-73. doi: 10.1038/nature09024.
6
Mechanical unfolding of an ankyrin repeat protein.
Biophys J. 2010 Apr 7;98(7):1294-301. doi: 10.1016/j.bpj.2009.12.4287.
7
Ligand binding mechanics of maltose binding protein.
J Mol Biol. 2009 Nov 13;393(5):1097-105. doi: 10.1016/j.jmb.2009.08.066. Epub 2009 Sep 3.
8
Single-molecule force spectroscopy distinguishes target binding modes of calmodulin.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14361-6. doi: 10.1073/pnas.0904654106. Epub 2009 Aug 10.
9
A statistical model for translocation of structured polypeptide chains through nanopores.
J Phys Chem B. 2009 Jul 30;113(30):10348-56. doi: 10.1021/jp900947f.
10
Ligand-dependent equilibrium fluctuations of single calmodulin molecules.
Science. 2009 Jan 30;323(5914):633-7. doi: 10.1126/science.1166191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验