Suppr超能文献

采用基于配体的设计、合成和药理学评价方法,对具有强效镇痛活性的对乙酰氨基酚邻位异构体类似物进行联合研究。

A combined study using ligand-based design, synthesis, and pharmacological evaluation of analogues of the acetaminophen ortho-regioisomer with potent analgesic activity.

机构信息

Programa de Pós-Graduação em Ciências Farmacêuticas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Augusto Correa, SN, 66075-110 Belém, PA, Brazil.

出版信息

Chem Biol Drug Des. 2012 Jul;80(1):99-105. doi: 10.1111/j.1747-0285.2012.01372.x. Epub 2012 Apr 27.

Abstract

A ligand-based drug design study was performed to acetaminophen regioisomers as analgesic candidates employing quantum chemical calculations at the DFT/B3LYP level of theory and the 6-31G* basis set. To do so, many molecular descriptors were used such as highest occupied molecular orbital, ionization potential, H-O bond dissociation energies, and spin densities, which might be related to quench reactivity of the tyrosyl radical to give N-acetyl-p-benzosemiquinone-imine through an initial electron withdrawing or hydrogen atom abstraction. Based on this in silico work, the most promising molecule, orthobenzamol, was synthesized and tested. The results expected from the theoretical prediction were confirmed in vivo using mouse models of nociception such as writhing, paw licking, and hot plate tests. All biological results suggested an antinociceptive activity mediated by opioid receptors. Furthermore, at 90 and 120 min, this new compound had an effect that was comparable to morphine, the standard drug for this test. Finally, the pharmacophore model is discussed according to the electronic properties derived from quantum chemistry calculations.

摘要

进行了基于配体的药物设计研究,以乙酰氨基酚对映异构体为研究对象,采用量子化学计算方法,在 DFT/B3LYP 理论水平和 6-31G*基组上,对其作为潜在的镇痛候选物进行了研究。为此,使用了许多分子描述符,如最高占据分子轨道、电离势、H-O 键离解能和自旋密度,这些描述符可能与酪氨酸自由基的淬灭反应性有关,通过初始的电子吸引或氢原子提取,生成 N-乙酰对苯醌亚胺。基于这项计算机研究,合成并测试了最有前途的分子邻苯甲酰胺。利用扭体、舔足和热板试验等疼痛模型,在体内对理论预测的结果进行了验证。所有的生物学结果均表明,该化合物通过阿片受体介导产生了镇痛作用。此外,在 90 和 120 分钟时,这种新化合物的效果与吗啡相当,吗啡是该试验的标准药物。最后,根据量子化学计算得出的电子性质,对药效基团模型进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验