Li Min, Zhang Hanhui, Wang Jian-xin, Pan Yi
School of Information Science and Engineering, Central South University, Changsha, Hunan, P R China.
BMC Syst Biol. 2012 Mar 10;6:15. doi: 10.1186/1752-0509-6-15.
Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value.
In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC), Betweenness Centrality (BC), Closeness Centrality (CC), Subgraph Centrality (SC), Eigenvector Centrality (EC), Information Centrality (IC), Bottle Neck (BN), Density of Maximum Neighborhood Component (DMNC), Local Average Connectivity-based method (LAC), Sum of ECC (SoECC), Range-Limited Centrality (RL), L-index (LI), Leader Rank (LR), Normalized α-Centrality (NC), and Moduland-Centrality (MC). Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN) is more than 50% when predicting no more than 500 proteins.
We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.
识别必需蛋白质一直是一项具有挑战性的任务,因为这需要耗时费力的实验方法。随着高通量技术的发展,大量的蛋白质-蛋白质相互作用数据可用,这为从网络层面检测蛋白质的必需性提供了前所未有的机会。已经提出了一系列基于网络拓扑结构预测必需蛋白质的计算方法。然而,基于网络拓扑的中心性度量对网络的鲁棒性非常敏感。因此,一种新的鲁棒必需蛋白质发现方法将具有重要价值。
在本文中,我们基于蛋白质-蛋白质相互作用和基因表达数据的整合提出了一种新的中心性度量方法,称为PeC。基于酿酒酵母的蛋白质-蛋白质相互作用网络验证了PeC的性能。实验结果表明,PeC的预测精度明显超过了之前提出的其他十五种中心性度量方法:度中心性(DC)、介数中心性(BC)、紧密中心性(CC)、子图中心性(SC)、特征向量中心性(EC)、信息中心性(IC)、瓶颈(BN)、最大邻域成分密度(DMNC)、基于局部平均连通性的方法(LAC)、ECC总和(SoECC)、范围受限中心性(RL)、L指数(LI)、领导者排名(LR)、归一化α中心性(NC)和模块度中心性(MC)。特别是,当预测不超过500种蛋白质时,PeC相对于经典中心性度量方法(BC、CC、SC、EC和BN)的提升超过50%。
我们证明蛋白质-蛋白质相互作用网络和基因表达数据的整合有助于提高预测必需蛋白质的精度。新的中心性度量方法PeC是一种有效的必需蛋白质发现方法。