Ghosh Rumi, Lerman Kristina
USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, California 90292, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066118. doi: 10.1103/PhysRevE.83.066118. Epub 2011 Jun 29.
A variety of metrics have been proposed to measure the relative importance of nodes in a network. One of these, alpha-centrality [P. Bonacich, Am. J. Sociol. 92, 1170 (1987)], measures the number of attenuated paths that exist between nodes. We introduce a normalized version of this metric and use it to study network structure, for example, to rank nodes and find community structure of the network. Specifically, we extend the modularity-maximization method for community detection to use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool for network analysis, since it contains a tunable parameter that sets the length scale of interactions. Studying how rankings and discovered communities change when this parameter is varied allows us to identify locally and globally important nodes and structures. We apply the proposed metric to several benchmark networks and show that it leads to better insights into network structure than alternative metrics.
已经提出了多种指标来衡量网络中节点的相对重要性。其中之一是α中心性[P.博纳西克,《美国社会学杂志》92,1170(1987)],它衡量节点之间存在的衰减路径的数量。我们引入了该指标的归一化版本,并使用它来研究网络结构,例如,对节点进行排名并找到网络的社区结构。具体来说,我们扩展了用于社区检测的模块度最大化方法,以使用该指标作为节点连通性的度量。归一化α中心性是网络分析的有力工具,因为它包含一个可调参数,该参数设置了相互作用的长度尺度。研究当该参数变化时排名和发现的社区如何变化,使我们能够识别局部和全局重要的节点和结构。我们将所提出的指标应用于几个基准网络,并表明它比其他指标能更好地洞察网络结构。