Molecular Pharmacology & Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Nat Chem Biol. 2012 Mar 11;8(4):358-65. doi: 10.1038/nchembio.911.
Macrocycles are key structural elements in numerous bioactive small molecules and are attractive targets in the diversity-oriented synthesis of natural product-based libraries. However, efficient and systematic access to diverse collections of macrocycles has proven difficult using classical macrocyclization reactions. To address this problem, we have developed a concise, modular approach to the diversity-oriented synthesis of macrolactones and macrolactams involving oxidative cleavage of a bridging double bond in polycyclic enol ethers and enamines. These substrates are assembled in only four or five synthetic steps and undergo ring expansion to afford highly functionalized macrocycles bearing handles for further diversification. In contrast to macrocyclization reactions of corresponding seco acids, the ring expansion reactions are efficient and insensitive to ring size and stereochemistry, overcoming key limitations of conventional approaches to systematic macrocycle synthesis. Cheminformatic analysis indicates that these macrocycles access regions of chemical space that overlap with natural products, distinct from currently targeted synthetic drugs.
大环化合物是许多生物活性小分子的关键结构单元,也是基于天然产物文库的多样性导向合成中的有吸引力的目标。然而,使用经典的大环化反应高效且系统地获得各种大环化合物已被证明具有挑战性。为了解决这个问题,我们开发了一种简洁、模块化的方法,用于通过多环烯醇醚和烯胺中桥接双键的氧化裂解,对大环内酯和大环内酰胺进行多样性导向合成。这些底物仅通过四或五个合成步骤组装,并进行环扩张,得到具有用于进一步多样化的手柄的高度官能化的大环化合物。与相应的 sec 酸的大环化反应相比,环扩张反应高效且对环大小和立体化学不敏感,克服了传统系统大环合成方法的关键限制。化学信息学分析表明,这些大环化合物可以进入与天然产物重叠的化学空间区域,与目前靶向的合成药物不同。