Ultrafast Nano-Optics, Institute of Physics, University of Oldenburg, D-26111 Oldenburg, Germany.
ACS Chem Biol. 2012 Jun 15;7(6):1006-14. doi: 10.1021/cb3000748. Epub 2012 Mar 26.
We report fluorescence lifetime and rotational anisotropy measurements of the fluorescent dye Alexa647 attached to the guanylate cyclase-activating protein 2 (GCAP2), an intracellular myristoylated calcium sensor protein operating in photoreceptor cells. By linking the dye to different protein regions critical for monitoring calcium-induced conformational changes, we could measure fluorescence lifetimes and rotational correlation times as a function of myristoylation, calcium, and position of the attached dye, while GCAP2 was still able to regulate guanylate cyclase in a Ca(2+)-sensitive manner. We observe distinct site-specific variations in the fluorescence dynamics when externally changing the protein conformation. A clear reduction in fluorescence lifetime suggests that in the calcium-free state a dye marker in amino acid position 131 senses a more hydrophobic protein environment than in position 111. Saturating GCAP2 with calcium increases the fluorescence lifetime and hence leads to larger exposure of position 111 to the solvent and at the same time to a movement of position 131 into a hydrophobic protein cleft. In addition, we find distinct, biexponential anisotropy decays reflecting the reorientational motion of the fluorophore dipole and the dye/protein complex, respectively. Our experimental data are well described by a "wobbling-in-a-cone" model and reveal that for dye markers in position 111 of the GCAP2 protein both addition of calcium and myristoylation results in a pronounced increase in orientational flexibility of the fluorophore. Our results provide evidence that the up-and-down movement of an α-helix that is situated between position 111 and 131 is a key feature of the dynamics of the protein-dye complex. Operation of this piston-like movement is triggered by the intracellular messenger calcium.
我们报告了荧光染料 Alexa647 连接到鸟苷酸环化酶激活蛋白 2(GCAP2)的荧光寿命和旋转各向异性测量结果,GCAP2 是一种在光感受器细胞中起作用的细胞内豆蔻酰化钙传感器蛋白。通过将染料连接到监测钙诱导构象变化的不同蛋白质区域,我们可以测量荧光寿命和旋转相关时间作为豆蔻酰化、钙和连接染料位置的函数,而 GCAP2 仍然能够以 Ca2+敏感的方式调节鸟苷酸环化酶。当外部改变蛋白质构象时,我们观察到荧光动力学的明显特定位置变化。荧光寿命的明显降低表明,在无钙状态下,位于氨基酸位置 131 的染料标记物比位于位置 111 的染料标记物感知到更疏水的蛋白质环境。用钙饱和 GCAP2 会增加荧光寿命,从而导致位置 111 更大程度地暴露于溶剂中,同时位置 131 移动到疏水蛋白质裂缝中。此外,我们还发现了明显的双指数各向异性衰减,分别反映了荧光团偶极子和染料/蛋白质复合物的重新取向运动。我们的实验数据很好地描述了“摆动在圆锥内”模型,并表明对于 GCAP2 蛋白位置 111 的染料标记物,钙和豆蔻酰化的加入都会导致荧光团的取向灵活性显著增加。我们的结果提供了证据,表明位于位置 111 和 131 之间的α-螺旋的上下运动是蛋白质-染料复合物动力学的关键特征。这种活塞式运动的操作是由细胞内信使钙触发的。