Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France.
G3 (Bethesda). 2012 Mar;2(3):331-8. doi: 10.1534/g3.111.001925. Epub 2012 Mar 1.
The study of P transposable element repression in Drosophila melanogaster led to the discovery of the trans-silencing effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences) represses in trans, in the female germline, a homologous P-lacZ transgene inserted in euchromatin. TSE shows variegation in ovaries and displays a maternal effect as well as epigenetic transmission through meiosis. In addition, TSE is highly sensitive to mutations affecting heterochromatin components (including HP1) and the Piwi-interacting RNA silencing pathway (piRNA), a homology-dependent silencing mechanism that functions in the germline. TSE appears thus to involve the piRNA-based silencing proposed to play a major role in P repression. Under this hypothesis, TSE may also be established when homology between the telomeric and target loci involves sequences other than P elements, including sequences exogenous to the D. melanogaster genome. We have tested whether TSE can be induced via lacZ sequence homology. We generated a piggyBac-otu-lacZ transgene in which lacZ is under the control of the germline ovarian tumor promoter, resulting in strong expression in nurse cells and the oocyte. We show that all piggyBac-otu-lacZ transgene insertions are strongly repressed by maternally inherited telomeric P-lacZ transgenes. This repression shows variegation between egg chambers when it is incomplete and presents a maternal effect, two of the signatures of TSE. Finally, this repression is sensitive to mutations affecting aubergine, a key player of the piRNA pathway. These data show that TSE can occur when silencer and target loci share solely a sequence exogenous to the D. melanogaster genome. This functionally supports the hypothesis that TSE represents a general repression mechanism which can be co-opted by new transposable elements to regulate their activity after a transfer to the D. melanogaster genome.
在黑腹果蝇中研究 P 转座元件抑制作用导致了转座沉默效应(TSE)的发现,这是一种同源依赖性抑制机制,其中 P-转座基因插入端粒异染色质(端粒相关序列)中,在雌性生殖细胞中以反式方式抑制同源 P-lacZ 转座基因在常染色质中的插入。TSE 在卵巢中表现出异质性,并表现出母体效应以及通过减数分裂的表观遗传传递。此外,TSE 对影响异染色质成分(包括 HP1)和 Piwi 相互作用 RNA 沉默途径(piRNA)的突变高度敏感,piRNA 是一种在生殖细胞中起作用的同源依赖性沉默机制。因此,TSE 似乎涉及到基于 piRNA 的沉默,这种沉默被认为在 P 抑制中起主要作用。根据这一假设,当端粒和靶标位点之间的同源性涉及除 P 元件之外的序列,包括黑腹果蝇基因组外的序列时,TSE 也可能建立。我们已经测试了 TSE 是否可以通过 lacZ 序列同源性诱导。我们生成了一个 piggyBac-otu-lacZ 转座基因,其中 lacZ 受生殖细胞卵巢肿瘤启动子的控制,导致在滋养细胞和卵母细胞中强烈表达。我们表明,所有 piggyBac-otu-lacZ 转座基因插入都受到母体遗传的端粒 P-lacZ 转座基因的强烈抑制。这种抑制在不完全时在卵囊中表现出异质性,并表现出母体效应,这是 TSE 的两个特征。最后,这种抑制对影响 aubergine 的突变敏感,aubergine 是 piRNA 途径的关键参与者。这些数据表明,当沉默子和靶标位点仅共享黑腹果蝇基因组外的序列时,TSE 可能发生。这从功能上支持了 TSE 代表一种普遍抑制机制的假设,该机制可以被新的转座元件采用,以在转移到黑腹果蝇基因组后调节它们的活性。