Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
J Chem Neuroanat. 2012 Mar;43(2):141-8. doi: 10.1016/j.jchemneu.2012.02.001. Epub 2012 Mar 6.
Injection into the nucleus tractus solitarii (NTS) of toxins that target substance P (SP) receptors ablates neurons that express neurokinin-1 (NK1) receptors, attenuates baroreflexes, and results in increased lability of arterial pressure. We and others have shown that the toxin leads to loss of neurons containing SP receptors and loss of GABAergic neurons in the NTS; but given that neither type neuron is thought to be integral to baroreflex transmission in NTS, mechanisms responsible for the cardiovascular changes remained unclear. Because NK1 receptors colocalize with N-methyl-d-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in NTS and because glutamate transmission may be integral to baroreflex transmission in the NTS we hypothesized that the toxic lesions may interrupt mechanisms for glutamate transmission. Interruption of those mechanisms could be responsible for the cardiovascular effects. We tested the hypothesis by performing fluorescent immunohistochemistry, confocal microscopy and image analysis after injecting stabilized SP-SAP (SSP-SAP) unilaterally into the NTS. We assessed changes in immunoreactivity (IR) of NMDA receptor subunit 1 (NMDAR1), AMPA receptor subunit 2 (GluR2), and 3 types of vesicular glutamate transporters (VGluT) as well as IR of gamma-aminobutyric acid receptors type b (GABAb), neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase (TH), and protein gene product 9.5 (PGP 9.5), a neuronal marker, in the NTS. When compared to that of the same section of the un-injected NTS, IR decreased significantly in the injected side for NMDAR1 (p<0.01), GluR2 (p<0.01), VGluT3 (p<0.01), GABAb (p<0.001), and PGP9.5 (p<0.001). In contrast, IR for VGluT1 (p<0.001), VGluT2 (p<0.001), nNOS (p<0.001), and TH (p<0.001) increased significantly. We conclude that pathologic effects following ablation of neurons with NK1 receptors in NTS may result from interruption of neurotransmission through other neurochemical systems associated with NK1 receptors-containing neurons.
向孤束核(NTS)注射靶向 P 物质(SP)受体的毒素可消除表达神经激肽-1(NK1)受体的神经元,减弱压力反射,并导致动脉压的不稳定性增加。我们和其他人已经表明,这种毒素会导致 NTS 中含有 SP 受体的神经元和 GABA 能神经元的丧失;但由于这两种类型的神经元都被认为不是 NTS 中压力反射传递所必需的,因此负责心血管变化的机制仍不清楚。由于 NK1 受体与 N-甲基-D-天冬氨酸(NMDA)受体和α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体在 NTS 中共定位,并且谷氨酸传递可能是 NTS 中压力反射传递所必需的,因此我们假设有毒病变可能会中断谷氨酸传递的机制。这些机制的中断可能是导致心血管效应的原因。我们通过将稳定的 SP-SAP(SSP-SAP)单侧注入 NTS 后进行荧光免疫组织化学、共聚焦显微镜和图像分析来检验这一假设。我们评估了 NMDA 受体亚基 1(NMDAR1)、AMPA 受体亚基 2(GluR2)和 3 种囊泡谷氨酸转运体(VGluT)以及γ-氨基丁酸受体 b 型(GABAb)、神经元型一氧化氮合酶(nNOS)、酪氨酸羟化酶(TH)和蛋白基因产物 9.5(PGP 9.5)的免疫反应性(IR)的变化,这些标志物均存在于 NTS 中。与未注射 NTS 相同部位的免疫反应性相比,注射侧的 NMDAR1(p<0.01)、GluR2(p<0.01)、VGluT3(p<0.01)、GABAb(p<0.001)和 PGP9.5(p<0.001)的免疫反应性显著降低。相比之下,VGluT1(p<0.001)、VGluT2(p<0.001)、nNOS(p<0.001)和 TH(p<0.001)的免疫反应性显著增加。我们的结论是,NTS 中 NK1 受体神经元消融后的病理效应可能是由于与 NK1 受体神经元相关的其他神经化学系统中断神经传递所致。