Suppr超能文献

条件关联。

Conditional association.

机构信息

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32608, USA.

出版信息

Neural Comput. 2012 Jul;24(7):1882-905. doi: 10.1162/NECO_a_00298. Epub 2012 Mar 19.

Abstract

Estimating conditional dependence between two random variables given the knowledge of a third random variable is essential in neuroscientific applications to understand the causal architecture of a distributed network. However, existing methods of assessing conditional dependence, such as the conditional mutual information, are computationally expensive, involve free parameters, and are difficult to understand in the context of realizations. In this letter, we discuss a novel approach to this problem and develop a computationally simple and parameter-free estimator. The difference between the proposed approach and the existing ones is that the former expresses conditional dependence in terms of a finite set of realizations, whereas the latter use random variables, which are not available in practice. We call this approach conditional association, since it is based on a generalization of the concept of association to arbitrary metric spaces. We also discuss a novel and computationally efficient approach of generating surrogate data for evaluating the significance of the acquired association value.

摘要

在神经科学应用中,给定第三个随机变量的知识来估计两个随机变量之间的条件依赖性对于理解分布式网络的因果结构至关重要。然而,现有的评估条件依赖性的方法,如条件互信息,计算成本高,涉及自由参数,并且在实现的上下文中难以理解。在这封信中,我们讨论了这个问题的一种新方法,并开发了一种计算简单且无参数的估计器。与现有方法的区别在于,前者用有限个实现来表示条件依赖性,而后者使用随机变量,而随机变量在实践中是不可用的。我们称这种方法为条件关联,因为它是基于关联概念在任意度量空间中的推广。我们还讨论了一种新颖且计算高效的方法,用于生成替代数据来评估所获得关联值的显著性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验