Suppr超能文献

三脚架树上的两状态马尔可夫模型的代数分析。

An algebraic analysis of the two state Markov model on tripod trees.

机构信息

Department of Statistics and School of Biological Sciences, The University of Auckland, Auckland, New Zealand.

出版信息

Math Biosci. 2012 May;237(1-2):38-48. doi: 10.1016/j.mbs.2012.03.001. Epub 2012 Mar 17.

Abstract

Methods of phylogenetic inference use more and more complex models to generate trees from data. However, even simple models and their implications are not fully understood. Here, we investigate the two-state Markov model on a tripod tree, inferring conditions under which a given set of observations gives rise to such a model. This type of investigation has been undertaken before by several scientists from different fields of research. In contrast to other work we fully analyse the model, presenting conditions under which one can infer a model from the observation or at least get support for the tree-shaped interdependence of the leaves considered. We also present all conditions under which the results can be extended from tripod trees to quartet trees, a step necessary to reconstruct at least a topology. Apart from finding conditions under which such an extension works we discuss example cases for which such an extension does not work.

摘要

系统发育推断方法使用越来越复杂的模型从数据中生成树。然而,即使是简单的模型及其含义也没有被完全理解。在这里,我们研究了三脚架树上的两状态马尔可夫模型,推断了在什么条件下给定的观测结果会产生这样的模型。这种类型的研究以前已经被来自不同研究领域的几位科学家进行过。与其他工作相比,我们对模型进行了全面分析,提出了在什么条件下可以从观察中推断出一个模型,或者至少可以得到所考虑的叶子之间树状相互依赖的支持。我们还提出了可以将结果从三脚架树扩展到四重树的所有条件,这是重建拓扑结构所必需的一步。除了找到这种扩展适用的条件外,我们还讨论了这种扩展不适用的示例情况。

相似文献

1
An algebraic analysis of the two state Markov model on tripod trees.
Math Biosci. 2012 May;237(1-2):38-48. doi: 10.1016/j.mbs.2012.03.001. Epub 2012 Mar 17.
2
The algebra of the general Markov model on phylogenetic trees and networks.
Bull Math Biol. 2012 Apr;74(4):858-80. doi: 10.1007/s11538-011-9691-z.
3
Identifying evolutionary trees and substitution parameters for the general Markov model with invariable sites.
Math Biosci. 2008 Jan;211(1):18-33. doi: 10.1016/j.mbs.2007.09.001. Epub 2007 Sep 25.
5
Markov invariants, plethysms, and phylogenetics.
J Theor Biol. 2008 Aug 7;253(3):601-15. doi: 10.1016/j.jtbi.2008.04.001. Epub 2008 Apr 7.
6
The identifiability of tree topology for phylogenetic models, including covarion and mixture models.
J Comput Biol. 2006 Jun;13(5):1101-13. doi: 10.1089/cmb.2006.13.1101.
7
Markov invariants and the isotropy subgroup of a quartet tree.
J Theor Biol. 2009 May 21;258(2):302-10. doi: 10.1016/j.jtbi.2009.01.021. Epub 2009 Feb 1.
8
Estimating trees from filtered data: identifiability of models for morphological phylogenetics.
J Theor Biol. 2010 Mar 7;263(1):108-19. doi: 10.1016/j.jtbi.2009.12.001. Epub 2009 Dec 11.
9
Phylogenetic MCMC algorithms are misleading on mixtures of trees.
Science. 2005 Sep 30;309(5744):2207-9. doi: 10.1126/science.1115493.
10
Implementation of a Markov model for phylogenetic trees.
J Theor Biol. 2006 Apr 7;239(3):324-33. doi: 10.1016/j.jtbi.2005.08.001. Epub 2005 Sep 19.

引用本文的文献

1
Distinguishing Between Convergent Evolution and Violation of the Molecular Clock for Three Taxa.
Syst Biol. 2018 Sep 1;67(5):905-915. doi: 10.1093/sysbio/syy038.
2
Matrix group structure and Markov invariants in the strand symmetric phylogenetic substitution model.
J Math Biol. 2016 Aug;73(2):259-82. doi: 10.1007/s00285-015-0951-7. Epub 2015 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验