Rychlik W, Spencer W J, Rhoads R E
Department of Biochemistry, University of Kentucky, Lexington 40536.
Nucleic Acids Res. 1990 Nov 11;18(21):6409-12. doi: 10.1093/nar/18.21.6409.
In the polymerase chain reaction (PCR) technique, DNA is amplified in vitro by a series of polymerization cycles consisting of three temperature-dependent steps: DNA denaturation, primer-template annealing, and DNA synthesis by a thermostable DNA polymerase. The purity and yield of the reaction products depend on several parameters, one of which is the annealing temperature (Ta). At both sub- and super-optimal Ta values, non-specific products may be formed, and the yield of products is reduced. Optimizing the Ta is especially critical when long products are synthesized or when total genomic DNA is the substrate for PCR. In this article we experimentally determine the optimal annealing temperature (TaOPT) values for several primer-template pairs and develop a method for its calculation. The TaOPT is found to be a function of the melting temperatures of the less stable primer-template pair and of the product. The fact that experimental and calculated TaOPT values agree to within 0.7 degree C eliminates the need for determining TaOPT experimentally. Synthesis of DNA fragments shorter than 1 kb is more efficient if a variable Ta is used, such that the Ta is higher in each consecutive cycle.
在聚合酶链反应(PCR)技术中,DNA在体外通过一系列聚合循环进行扩增,这些循环由三个温度依赖性步骤组成:DNA变性、引物-模板退火以及由热稳定DNA聚合酶进行DNA合成。反应产物的纯度和产量取决于几个参数,其中之一是退火温度(Ta)。在低于和高于最佳Ta值时,可能会形成非特异性产物,并且产物产量会降低。当合成长产物或当总基因组DNA作为PCR的底物时,优化Ta尤为关键。在本文中,我们通过实验确定了几个引物-模板对的最佳退火温度(TaOPT)值,并开发了一种计算方法。发现TaOPT是较不稳定的引物-模板对和产物的解链温度的函数。实验值和计算值的TaOPT在0.7摄氏度范围内一致,这消除了通过实验确定TaOPT的必要性。如果使用可变的Ta,使得在每个连续循环中Ta更高,则合成短于1 kb的DNA片段会更有效。