Suppr超能文献

DNA纳米结构的等温组装

Isothermal assembly of DNA nanostructures.

作者信息

Chandrasekaran Arun Richard

机构信息

The RNA Institute, University at Albany, State University of New York, Albany, NY, USA.

Department of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA.

出版信息

Chem Commun (Camb). 2025 May 28;61(44):7983-7994. doi: 10.1039/d5cc00760g.

Abstract

DNA nanostructures are typically assembled using a thermal annealing protocol by heating the DNA mixture to high temperatures and then cooling it down to a lower temperature. Recent efforts have shown the assembly of DNA nanostructures by incubation at constant temperatures in a process called isothermal assembly. DNA motifs, polyhedra, lattices, and other nanostructures based on single-stranded tiles and the DNA origami strategy have all been constructed using the isothermal assembly process. Several additives such as denaturing agents, cationic amino acids, and natural products aid in the isothermal process at room temperature and physiological temperature. This review focusses on the developments in isothermal assembly of DNA nanostructures, key takeaways from recent studies, and the advantages and limitations of isothermal assembly in the broader context of DNA nanotechnology.

摘要

DNA纳米结构通常采用热退火方案进行组装,即将DNA混合物加热到高温,然后冷却至较低温度。最近的研究表明,可以通过在恒温下孵育,采用一种称为等温组装的过程来组装DNA纳米结构。基于单链片和DNA折纸策略的DNA基序、多面体、晶格及其他纳米结构均已通过等温组装过程构建而成。几种添加剂,如变性剂、阳离子氨基酸和天然产物,有助于在室温及生理温度下的等温过程。本综述重点关注DNA纳米结构等温组装的进展、近期研究的关键要点,以及在DNA纳米技术更广泛背景下等温组装的优缺点。

相似文献

1
Isothermal assembly of DNA nanostructures.
Chem Commun (Camb). 2025 May 28;61(44):7983-7994. doi: 10.1039/d5cc00760g.
2
Isothermal assembly of DNA origami structures using denaturing agents.
J Am Chem Soc. 2008 Aug 6;130(31):10062-3. doi: 10.1021/ja8030196. Epub 2008 Jul 10.
3
Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.
Small. 2013 Sep 9;9(17):2954-9. doi: 10.1002/smll.201202861. Epub 2013 Feb 22.
5
Two-Dimensional DNA Origami Lattices Assembled on Lipid Bilayer Membranes.
Methods Mol Biol. 2023;2639:83-90. doi: 10.1007/978-1-0716-3028-0_5.
6
Counterions influence the isothermal self-assembly of DNA nanostructures.
Sci Adv. 2025 Mar 14;11(11):eadu7366. doi: 10.1126/sciadv.adu7366. Epub 2025 Mar 12.
7
Isothermal self-assembly of multicomponent and evolutive DNA nanostructures.
Nat Nanotechnol. 2023 Nov;18(11):1311-1318. doi: 10.1038/s41565-023-01468-2. Epub 2023 Jul 31.
8
DNA origami frame filled with two types of single-stranded tiles.
Nanoscale. 2022 Apr 7;14(14):5340-5346. doi: 10.1039/d1nr05583f.
9
Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
Acc Chem Res. 2014 Jun 17;47(6):1778-88. doi: 10.1021/ar500023b. Epub 2014 Apr 10.
10
Cation-dependent assembly of hexagonal DNA origami lattices on SiO surfaces.
Nanoscale. 2023 Aug 10;15(31):12894-12906. doi: 10.1039/d3nr02926c.

本文引用的文献

1
Nanotubes Growth by Self-Assembly of DNA Strands at Room Temperature.
ACS Nano. 2025 May 20;19(19):18203-18213. doi: 10.1021/acsnano.4c17516. Epub 2025 May 8.
2
Isothermal Disorder-to-Order Transitions of DNA Origami Structures Induced by Alternative Component Subsets.
JACS Au. 2025 Mar 27;5(4):1641-1648. doi: 10.1021/jacsau.5c00195. eCollection 2025 Apr 28.
3
Counterions influence the isothermal self-assembly of DNA nanostructures.
Sci Adv. 2025 Mar 14;11(11):eadu7366. doi: 10.1126/sciadv.adu7366. Epub 2025 Mar 12.
4
DNA Nanotechnology in the Undergraduate Laboratory: Toehold-Less Strand Displacement in Switchback DNA.
JACS Au. 2025 Jan 29;5(2):1069-1075. doi: 10.1021/jacsau.4c01204. eCollection 2025 Feb 24.
5
Fully addressable designer superstructures assembled from one single modular DNA origami.
Nat Commun. 2025 Feb 12;16(1):1556. doi: 10.1038/s41467-025-56846-2.
6
Folding Competition and Dynamic Transformation in DNA Origami: Parallel Versus Antiparallel Crossovers.
Small Methods. 2025 Jun;9(6):e2401343. doi: 10.1002/smtd.202401343. Epub 2025 Feb 3.
7
Parallel molecular data storage by printing epigenetic bits on DNA.
Nature. 2024 Oct;634(8035):824-832. doi: 10.1038/s41586-024-08040-5. Epub 2024 Oct 23.
8
Switchback RNA.
ACS Chem Biol. 2024 Dec 20;19(12):2394-2398. doi: 10.1021/acschembio.4c00518. Epub 2024 Sep 24.
9
The unusual structural properties and potential biological relevance of switchback DNA.
Nat Commun. 2024 Aug 6;15(1):6636. doi: 10.1038/s41467-024-50348-3.
10
DNA Tetrahedra as Functional Nanostructures: From Basic Principles to Applications.
Angew Chem Int Ed Engl. 2024 Oct 7;63(41):e202411118. doi: 10.1002/anie.202411118. Epub 2024 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验