Instituto Universitario para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC), Universidad de Las Palmas de Gran Canaria, Campus de Tafira s/n, E-35017 Las Palmas de Gran Canaria, Spain.
Sensors (Basel). 2012;12(2):1352-82. doi: 10.3390/s120201352. Epub 2012 Feb 1.
Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors.
在过去的二十年中,基于手部生物特征的个人识别吸引了众多研究人员的兴趣。已经在文献中发表了大量基于不同程序和采集设备的提案。然而,设备之间的比较及其互操作性尚未得到彻底研究。本文试图通过提出改进不同手部生物识别方案之间互操作性的程序来填补这一空白。实验是在一个由 6 种不同的手部生物识别方案采集的 8320 张手部图像数据库上进行的,其中包括平面扫描仪、不同波长的网络摄像头、高质量摄像头和非接触式设备。采集了手部的两侧。我们的实验包括四种特征提取方法,这些方法确定了两种最流行的手部生物识别技术(手形和掌纹)在不同场景下的最佳性能。我们提出了在图像和特征级别进行平滑处理的技术,以减少设备间的可变性。结果表明,在互操作性方面,比较手形比掌纹提供了更好的性能,但当使用相似的传感器时,掌纹可能更有效。