Suppr超能文献

一种基于特征掌纹和特征指纹的生物识别系统。

A biometric identification system based on eigenpalm and eigenfinger features.

作者信息

Ribaric Slobodan, Fratric Ivan

机构信息

Department of Electronics, Microelectronics, Computer, and Intelligent Systems, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska, Croatia.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2005 Nov;27(11):1698-709. doi: 10.1109/TPAMI.2005.209.

Abstract

This paper presents a multimodal biometric identification system based on the features of the human hand. We describe a new biometric approach to personal identification using eigenfinger and eigenpalm features, with fusion applied at the matching-score level. The identification process can be divided into the following phases: capturing the image; preprocessing; extracting and normalizing the palm and strip-like finger subimages; extracting the eigenpalm and eigenfinger features based on the K-L transform; matching and fusion; and, finally, a decision based on the (k, l)-NN classifier and thresholding. The system was tested on a database of 237 people (1,820 hand images). The experimental results showed the effectiveness of the system in terms of the recognition rate (100 percent), the equal error rate (EER = 0.58 percent), and the total error rate (TER = 0.72 percent).

摘要

本文提出了一种基于人手特征的多模态生物识别系统。我们描述了一种使用特征手掌和特征手指特征进行个人识别的新生物识别方法,并在匹配分数级别进行融合。识别过程可分为以下几个阶段:图像采集;预处理;提取并归一化手掌和条状手指子图像;基于K-L变换提取特征手掌和特征手指特征;匹配与融合;最后,基于(k, l)-NN分类器和阈值进行决策。该系统在一个包含237人(1820张手部图像)的数据库上进行了测试。实验结果表明,该系统在识别率(100%)、等错误率(EER = 0.58%)和总错误率(TER = 0.72%)方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验