Laboratoire de Génie Chimique et Biochimique, Polytech Clermont-Ferrand, Clermont Université, 24 Avenue des Landais, BP 206 Aubière Cedex, France.
Appl Biochem Biotechnol. 2012 Jul;167(5):1076-91. doi: 10.1007/s12010-012-9651-6. Epub 2012 Mar 27.
As a part of a natural biological N-cycle, nitrification is one of the steps included in the conception of artificial ecosystems designed for extraterrestrial life support systems (LSS) such as Micro-Ecological Life Support System Alternative (MELiSSA) project, which is the LSS project of the European Space Agency. Nitrification in aerobic environments is carried out by two groups of bacteria in a two-step process. The ammonia-oxidizing bacteria (Nitrosomonas europaea) realize the oxidation of ammonia to nitrite, and the nitrite-oxidizing bacteria (Nitrobacter winogradskyi), the oxidation of nitrite to nitrate. In both cases, the bacteria achieve these oxidations to obtain an energy and reductant source for their growth and maintenance. Furthermore, both groups also use CO₂ predominantly as their carbon source. They are typically found together in ecosystems, and consequently, nitrite accumulation is rare. Due to the necessity of modeling accurately conversion yields and transformation rates to achieve a complete modeling of MELiSSA, the present study focuses on the experimental determination of nitrogen to biomass conversion yields. Kinetic and mass balance studies for axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions are performed. The follow-up of these cultures is done using flow cytometry for assessing biomass concentrations and ionic chromatography for ammonium, nitrite, and nitrate concentrations. A linear correlation is observed between cell count and optical density (OD) measurement (within a 10 % accuracy) validating OD measurements for an on-line estimation of biomass quantity even at very low biomass concentrations. The conversion between cell count and biomass concentration has been determined: 7.1 × 10¹² cells g dry matter (DM)⁻¹ for Nitrobacter and 6.3 × 10¹² cells g DM⁻¹ for Nitrosomonas. Nitrogen substrates and products are assessed redundantly showing excellent agreement for mass balance purposes and conversion yields determination. Although the dominant phenomena are the oxidation of NH₄⁺ into nitrite (0.95 mol mol N⁻¹ for Nitrosomonas europaea within an accuracy of 3 %) and nitrite into nitrate (0.975 mol mol N⁻¹ for Nitrobacter winogradskyi within an accuracy of 2 %), the Nitrosomonas europaea conversion yield is estimated to be 0.42 g DM mol N⁻¹, and Nitrobacter winogradskyi conversion yield is estimated to be 0.27 g DM mol N⁻¹. The growth rates of both strains appear to be dominated by the oxygen transfer into the experimental setups.
作为自然生物氮循环的一部分,硝化作用是为外星生命支持系统(LSS)设计的人工生态系统概念的步骤之一,例如欧洲航天局的微生态生命支持系统替代(MELiSSA)项目。在需氧环境中,硝化作用由两组细菌分两步完成。氨氧化细菌(Nitrosomonas europaea)将氨氧化为亚硝酸盐,亚硝酸盐氧化细菌(Nitrobacter winogradskyi)将亚硝酸盐氧化为硝酸盐。在这两种情况下,细菌都通过这些氧化作用获得生长和维持所需的能量和还原剂来源。此外,两组细菌都主要使用 CO₂作为碳源。它们通常一起存在于生态系统中,因此亚硝酸盐的积累很少见。由于需要准确建模转化率和转化速率以实现对 MELiSSA 的完整建模,因此本研究侧重于实验确定氮到生物质的转化效率。对自养条件下的纯种培养物 Nitrosomonas europaea 和 Nitrobacter winogradskyi 进行了动力学和质量平衡研究。使用流式细胞术评估生物量浓度和离子色谱法评估铵、亚硝酸盐和硝酸盐浓度来跟踪这些培养物。观察到细胞计数与光密度(OD)测量之间存在线性相关性(精度在 10%以内),即使在非常低的生物量浓度下,OD 测量也可验证在线估计生物量数量的准确性。已经确定了细胞计数与生物质浓度之间的转换关系:Nitrobacter 为 7.1×10¹² 个细胞 g 干物质(DM)⁻¹,Nitrosomonas 为 6.3×10¹² 个细胞 g DM⁻¹。氮底物和产物被冗余评估,显示出出色的质量平衡和转化率测定一致性。尽管主要现象是 NH₄⁺氧化成亚硝酸盐(对于 Nitrosomonas europaea,0.95 mol mol N⁻¹,精度为 3%)和亚硝酸盐氧化成硝酸盐(对于 Nitrobacter winogradskyi,0.975 mol mol N⁻¹,精度为 2%),但 Nitrosomonas europaea 的转化率估计为 0.42 g DM mol N⁻¹,Nitrobacter winogradskyi 的转化率估计为 0.27 g DM mol N⁻¹。两种菌株的生长速率似乎都由实验装置中的氧气转移主导。