Suppr超能文献

部分硝化生物反应器中自养氨和亚硝酸盐氧化独特的微生物生态学和生物动力学。

Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor.

作者信息

Ahn Joon Ho, Yu Ran, Chandran Kartik

机构信息

Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, USA.

出版信息

Biotechnol Bioeng. 2008 Aug 15;100(6):1078-87. doi: 10.1002/bit.21863.

Abstract

Biological nitrogen removal (BNR) based on partial nitrification and denitrification via nitrite is a cost-effective alternate to conventional nitrification and denitrification (via nitrate). The goal of this study was to investigate the microbial ecology, biokinetics, and stability of partial nitrification. Stable long-term partial nitrification resulting in 82.1 +/- 17.2% ammonia oxidation, primarily to nitrite (77.3 +/- 19.5% of the ammonia oxidized) was achieved in a lab-scale bioreactor by operation at a pH, dissolved oxygen and solids retention time of 7.5 +/- 0.1, 1.54 +/- 0.87 mg O(2)/L, and 3.0 days, respectively. Bioreactor ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) populations were most closely related to Nitrosomonas europaea and Nitrobacter spp., respectively. The AOB population fraction varied in the range 61 +/- 45% and was much higher than the NOB fraction, 0.71 +/- 1.1%. Using direct measures of bacterial concentrations in conjunction with independent activity measures and mass balances, the maximum specific growth rate (micro(max)), specific decay (b) and observed biomass yield coefficients (Y(obs)) for AOB were 1.08 +/- 1.03 day(-1), 0.32 +/- 0.34 day(-1), and 0.15 +/- 0.06 mg biomass COD/mg N oxidized, respectively. Corresponding micro(max), b, and Y(obs) values for NOB were 2.6 +/- 2.05 day(-1), 1.7 +/- 1.9 day(-1), and 0.04 +/- 0.02 mg biomass COD/mg N oxidized, respectively. The results of this study demonstrate that the highly selective partial nitrification operating conditions enriched for a narrow diversity of rapidly growing AOB and NOB populations unlike conventional BNR reactors, which host a broader diversity of nitrifying bacteria. Further, direct measures of microbial abundance enabled not only elucidation of mixed community microbial ecology but also estimation of key engineering parameters describing bioreactor systems supporting these communities.

摘要

基于亚硝酸盐的部分硝化和反硝化作用的生物脱氮(BNR)是一种比传统硝化和反硝化(通过硝酸盐)更具成本效益的替代方法。本研究的目的是调查部分硝化的微生物生态学、生物动力学和稳定性。通过在pH值、溶解氧和固体停留时间分别为7.5±0.1、1.54±0.87mg O₂/L和3.0天的条件下运行,在实验室规模的生物反应器中实现了稳定的长期部分硝化,氨氧化率达到82.1±17.2%,主要生成亚硝酸盐(占氧化氨的77.3±19.5%)。生物反应器中的氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)群体分别与欧洲亚硝化单胞菌和硝化杆菌属关系最为密切。AOB群体比例在61±45%范围内变化,远高于NOB比例,即0.71±1.1%。结合细菌浓度的直接测量与独立的活性测量和质量平衡,AOB的最大比生长速率(μ(max))、比衰减率(b)和观察到的生物量产率系数(Y(obs))分别为1.08±1.03 d⁻¹、0.32±0.34 d⁻¹和0.15±0.06mg生物量COD/mg氧化氮。NOB相应的μ(max)、b和Y(obs)值分别为2.6±2.05 d⁻¹、1.7±1.9 d⁻¹和0.04±0.02mg生物量COD/mg氧化氮。本研究结果表明,与传统BNR反应器不同,高度选择性的部分硝化操作条件富集了快速生长的AOB和NOB群体的狭窄多样性,传统BNR反应器中硝化细菌的多样性更广泛。此外,微生物丰度的直接测量不仅能够阐明混合群落的微生物生态学,还能够估计描述支持这些群落的生物反应器系统的关键工程参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验