ICFO--lnstitut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain.
Faraday Discuss. 2011;153:51-60; discussion 73-91. doi: 10.1039/c1fd00087j.
The detection of individual molecules allows to unwrap the inhomogeneously broadened ensemble and reveal the spatial disorder and temporal dynamics of single entities. During 20 years of increasing sophistication this approach has provided valuable insights into biomolecular interactions, cellular processes, polymer dynamics, etc. Unfortunately the detection of fluorescence, i.e. incoherent spontaneous emission, has essentially kept the time resolution of the single molecule approach out of the range of ultrafast coherent processes. In parallel coherent control of quantum interferences has developed as a powerful method to study and actively steer ultrafast molecular interactions and energy conversion processes. However the degree of coherent control that can be reached in ensembles is restricted, due to the intrinsic inhomogeneity of the synchronized subset. Clearly the only way to overcome spatio-temporal disorder and achieve key control is by addressing individual units: coherent control of single molecules. Here we report the observation and manipulation of vibrational wave-packet interference in individual molecules at ambient conditions. We show that adapting the time and phase distribution of the optical excitation field to the dynamics of each molecule results in a superior degree of control compared to the ensemble approach. Phase reversal does invert the molecular response, confirming the control of quantum coherence. Time-phase maps show a rich diversity in excited state dynamics between different, yet chemically identical, molecules. The presented approach is promising for single-unit coherent control in multichromophoric systems. Especially the role of coherence in the energy transfer of single antenna complexes under physiological conditions is subject of great attention. Now the role of energy disorder and variation in coupling strength can be explored, beyond the inhomogeneously broadened ensemble.
单个分子的检测可以揭开不均匀展宽的整体,并揭示单个实体的空间无序和时间动态。在 20 年的不断发展中,这种方法为研究生物分子相互作用、细胞过程、聚合物动力学等提供了有价值的见解。不幸的是,荧光的检测,即非相干自发发射,基本上使单分子方法的时间分辨率无法达到超快相干过程的范围。与此同时,量子干涉的相干控制已经发展成为研究和主动控制超快分子相互作用和能量转换过程的一种强大方法。然而,由于同步子集的固有不均匀性,在集合中可以达到的相干控制程度受到限制。显然,克服时空无序并实现关键控制的唯一方法是通过寻址单个单元:单个分子的相干控制。在这里,我们报告了在环境条件下观察和操纵单个分子中的振动波包干涉。我们表明,通过将光学激发场的时间和相位分布适应每个分子的动力学,可以实现比集合方法更优越的控制程度。相位反转会反转分子响应,从而确认量子相干的控制。时相图显示了不同但化学上相同的分子之间激发态动力学的丰富多样性。所提出的方法有望在多发色团系统中实现单单元相干控制。特别是在生理条件下,单个天线复合物的能量转移中相干的作用是非常关注的主题。现在可以探索能量无序和耦合强度变化的作用,而不仅仅是不均匀展宽的集合。