Department of Chemistry, University of Utah, 315 S. 1400 E. Room 2020, Salt Lake City, Utah 84112, USA.
J Phys Chem A. 2012 Apr 19;116(15):3802-15. doi: 10.1021/jp301446v. Epub 2012 Apr 5.
The sequential bond energies of Ca(2+)(H(2)O)(x) complexes, where x = 1-8, are measured by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. From an electrospray ionization source that produces an initial distribution of Ca(2+)(H(2)O)(x) complexes where x = 6-8, complexes down to x = 2 are formed using an in-source fragmentation technique. Ca(2+)(H(2)O) cannot be formed in this source because charge separation into CaOH(+) and H(3)O(+) is a lower energy pathway than simple water loss from Ca(2+)(H(2)O)(2). The kinetic energy dependent cross sections for dissociation of Ca(2+)(H(2)O)(x) complexes, where x = 2-9, are examined over a wide energy range to monitor all dissociation products and are modeled to obtain 0 and 298 K binding energies. Analysis of both primary and secondary water molecule losses from each sized complex provides thermochemistry for the sequential hydration energies of Ca(2+) for x = 1-8 and the first experimental values for x = 1-4. Additionally, the thermodynamic onsets leading to the charge separation products from Ca(2+)(H(2)O)(2) and Ca(2+)(H(2)O)(3) are determined for the first time. Our experimental results for x = 1-6 agree well with previously calculated binding enthalpies as well as quantum chemical calculations performed here. Agreement for x = 1 is improved when the basis set on calcium includes core correlation.
通过在引导离子束串联质谱仪中进行阈碰撞诱导解离(TCID),测量了 Ca(2+)(H(2)O)(x) 配合物(其中 x = 1-8)的顺序键能。从产生 Ca(2+)(H(2)O)(x) 配合物初始分布(其中 x = 6-8)的电喷雾电离源,使用源内碎裂技术形成 x 低至 2 的配合物。由于电荷分离成 CaOH(+) 和 H(3)O(+) 是比 Ca(2+)(H(2)O)(2) 简单失去水分子更低能量的途径,因此在这个源中不能形成 Ca(2+)(H(2)O)。研究了 Ca(2+)(H(2)O)(x) 配合物(其中 x = 2-9)的动能相关解离截面,在很宽的能量范围内监测所有解离产物,并进行建模以获得 0 和 298 K 的结合能。分析每个大小配合物中初级和次级水分子的损失,提供了 Ca(2+) 的顺序水合能的热化学数据,用于 x = 1-8,以及 x = 1-4 的第一个实验值。此外,首次确定了导致 Ca(2+)(H(2)O)(2) 和 Ca(2+)(H(2)O)(3) 电荷分离产物的热力学起始值。我们对 x = 1-6 的实验结果与之前计算的结合焓以及这里进行的量子化学计算吻合得很好。当钙的基组包括核心相关时,对 x = 1 的吻合度得到了改善。