Suppr超能文献

对具有不同质心位置和转动惯量的抓取物体的稳定性控制。

Stability control of grasping objects with different locations of center of mass and rotational inertia.

作者信息

Slota Gregory P, Suh Moon Suk, Latash Mark L, Zatsiorsky Vladimir M

机构信息

Kinesiology, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

J Mot Behav. 2012;44(3):169-78. doi: 10.1080/00222895.2012.665101. Epub 2012 Mar 28.

Abstract

The objective of this study was to observe how the digits of the hand adjust to varying location of the center of mass (CoM) above or below the grasp and rotational inertia (RI) of a handheld object. Such manipulations do not immediately affect the equilibrium equations while stability control is affected. Participants were instructed to hold a handle, instrumented with 5 force-torque transducers and a 3-D rotational tilt sensor, while either the location of the CoM or the RI values were adjusted. On the whole, people use 2 mechanisms to adjust to the changed stability requirements; they increase the grip force and redistribute the total moment between the normal and tangential forces offsetting internal torques. The increase in grip force, an internal force, and offsetting internal torques allows for increases in joint and hand rotational apparent stiffness while not creating external forces-torques that would unbalance the equations of equilibrium.

摘要

本研究的目的是观察手部手指如何适应手持物体质心(CoM)在抓握上方或下方的不同位置以及转动惯量(RI)的变化。这种操作不会立即影响平衡方程,但会影响稳定性控制。参与者被要求握住一个装有5个力 - 扭矩传感器和一个三维旋转倾斜传感器的手柄,同时调整质心位置或转动惯量值。总体而言,人们使用两种机制来适应变化的稳定性要求;他们增加握力,并在法向力和切向力之间重新分配总力矩以抵消内部扭矩。握力(一种内力)的增加以及抵消内部扭矩,使得关节和手部的转动表观刚度增加,同时不会产生会使平衡方程失衡的外力 - 扭矩。

相似文献

1
Stability control of grasping objects with different locations of center of mass and rotational inertia.
J Mot Behav. 2012;44(3):169-78. doi: 10.1080/00222895.2012.665101. Epub 2012 Mar 28.
3
Prehension stability: experiments with expanding and contracting handle.
J Neurophysiol. 2006 Apr;95(4):2513-29. doi: 10.1152/jn.00839.2005. Epub 2005 Nov 30.
4
Digit force adjustments during finger addition/removal in multi-digit prehension.
Exp Brain Res. 2008 Aug;189(3):345-59. doi: 10.1007/s00221-008-1430-9. Epub 2008 Jun 14.
6
Tangential torque effects on the control of grip forces when holding objects with a precision grip.
J Neurophysiol. 1997 Sep;78(3):1619-30. doi: 10.1152/jn.1997.78.3.1619.
7
Maintaining rotational equilibrium during object manipulation: linear behavior of a highly non-linear system.
Exp Brain Res. 2006 Mar;169(4):519-31. doi: 10.1007/s00221-005-0166-z. Epub 2005 Nov 17.
8
Control of grip force when tilting objects: effect of curvature of grasped surfaces and applied tangential torque.
J Neurosci. 1998 Dec 15;18(24):10724-34. doi: 10.1523/JNEUROSCI.18-24-10724.1998.
9
Control of grasp stability during pronation and supination movements.
Exp Brain Res. 1999 Sep;128(1-2):20-30. doi: 10.1007/s002210050813.
10
Multi-digit coordination during lifting a horizontally oriented object: synergies control with referent configurations.
Exp Brain Res. 2012 Oct;222(3):277-90. doi: 10.1007/s00221-012-3215-4. Epub 2012 Aug 22.

引用本文的文献

1
Dexterous manipulation: differential sensitivity of manipulation and grasp forces to task requirements.
J Neurophysiol. 2024 Jul 1;132(1):259-276. doi: 10.1152/jn.00034.2024. Epub 2024 Jun 12.
2
Left visual field preference for a bimanual grasping task with ecologically valid object sizes.
Exp Brain Res. 2013 Oct;230(2):187-96. doi: 10.1007/s00221-013-3643-9. Epub 2013 Jul 16.

本文引用的文献

1
Grip forces during object manipulation: experiment, mathematical model, and validation.
Exp Brain Res. 2011 Aug;213(1):125-39. doi: 10.1007/s00221-011-2784-y. Epub 2011 Jul 7.
2
Grip force regulates hand impedance to optimize object stability in high impact loads.
Neuroscience. 2011 Aug 25;189:269-76. doi: 10.1016/j.neuroscience.2011.04.055. Epub 2011 May 5.
3
Prehension of half-full and half-empty glasses: time and history effects on multi-digit coordination.
Exp Brain Res. 2011 Apr;209(4):571-85. doi: 10.1007/s00221-011-2590-6. Epub 2011 Feb 18.
4
Balancing with vibration: a prelude for "drift and act" balance control.
PLoS One. 2009 Oct 20;4(10):e7427. doi: 10.1371/journal.pone.0007427.
5
Impedance control reduces instability that arises from motor noise.
J Neurosci. 2009 Oct 7;29(40):12606-16. doi: 10.1523/JNEUROSCI.2826-09.2009.
6
Predictive feedback in human simulated pendulum balancing.
Biol Cybern. 2009 Aug;101(2):131-46. doi: 10.1007/s00422-009-0325-6. Epub 2009 Jul 9.
7
Motor learning characterized by changing Lévy distributions.
PLoS One. 2009 Jun 22;4(6):e5998. doi: 10.1371/journal.pone.0005998.
8
Hierarchical control of static prehension: I. Biomechanics.
Exp Brain Res. 2009 Mar;193(4):615-31. doi: 10.1007/s00221-008-1662-8. Epub 2008 Dec 6.
9
Hierarchical control of static prehension: II. Multi-digit synergies.
Exp Brain Res. 2009 Mar;194(1):1-15. doi: 10.1007/s00221-008-1663-7. Epub 2008 Dec 2.
10
A technique to determine friction at the fingertips.
J Appl Biomech. 2008 Feb;24(1):43-50. doi: 10.1123/jab.24.1.43.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验