Suppr超能文献

抗体-抗原识别界面中互补决定区序列的合理化设计。

Rationalization and design of the complementarity determining region sequences in an antibody-antigen recognition interface.

机构信息

Genomics Research Center, Academia Sinica, Taipei, Taiwan.

出版信息

PLoS One. 2012;7(3):e33340. doi: 10.1371/journal.pone.0033340. Epub 2012 Mar 22.

Abstract

Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes.

摘要

蛋白质-蛋白质相互作用是生物系统中的关键决定因素。工程蛋白与蛋白表面特定区域的结合可能会导致针对人类疾病的治疗或诊断方法。但是,利用计算原子相互作用自由能来设计表位特异性的蛋白质-蛋白质相互作用仍然是一个具有挑战性的问题。在这里,我们以抗体-VEGF(血管内皮生长因子)相互作用为例,通过数据库中的蛋白质结构,利用相互作用原子的三维分布来合理化抗体-抗原界面中观察到的实验氨基酸偏好性。基于合理化的机器学习模型可以推广到设计抗体-抗原界面中的氨基酸偏好性,这在实验验证方面可以通过当前高通量的合成抗体展示技术来实现。基准系统的留一交叉验证的准确性、精度、召回率(敏感性)和特异性分别为 0.69、0.45、0.63 和 0.71,24 个 CDR 位置中的 20 种氨基酸类型的整体马修斯相关系数为 0.312。该基于结构的计算性抗体设计方法进一步应用于其他与 VEGF 结合的抗体。结果表明,该方法可以为基于动物免疫系统的当前抗体技术提供替代方案,用于针对预定抗原表位的治疗性和诊断性抗体的工程设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a95/3310866/b5062d26783e/pone.0033340.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验