Suppr超能文献

在不同阶段的食物强化操作性训练过程中,伏隔核和新纹状体的 c-Fos 和 DARPP-32 免疫反应的变化。

Changes in nucleus accumbens and neostriatal c-Fos and DARPP-32 immunoreactivity during different stages of food-reinforced instrumental training.

机构信息

Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.

出版信息

Eur J Neurosci. 2012 Apr;35(8):1354-67. doi: 10.1111/j.1460-9568.2012.08036.x. Epub 2012 Mar 30.

Abstract

Nucleus accumbens is involved in several aspects of instrumental behavior, motivation and learning. Recent studies showed that dopamine (DA) release in the accumbens shell was significantly increased on the first day of training on a fixed ratio (FR) 5 schedule (i.e. the transition from FR1 to FR5) compared with those rats that continued FR1 training, even though the rats on their first day of FR5 training received less food reinforcement than rats continuing on the FR1 schedule. Additionally, the second day of FR5 responding was marked by a significant increase in DA release in accumbens core. The present studies employed immunohistochemical methods to characterize the changes in cellular markers of accumbens and neostriatal neural activity that occur during various stages of food-reinforced FR5 training. c-Fos and DARPP-32 immunoreactivity in accumbens shell was significantly increased on the first day of FR5 training, while core c-Fos and DARPP-32 expression showed large increases on the second day of FR5 training. Additional studies showed that c-Fos and DARPP-32 expression in neostriatum increased after more extensive training. Double-labeling studies with immunofluorescence methods indicated that increases in accumbens c-Fos and DARPP-32 expression were primarily seen in substance-P-positive neurons. These increases in accumbens c-Fos and DARPP-32 immunoreactivity seen during the initial phases of FR training may reflect several factors, including novelty, learning, stress or the presentation of a work-related challenge to the organism. Moreover, it appears that the separate subregions of the striatal complex are differentially activated at distinct phases of instrumental training.

摘要

伏隔核参与了工具行为、动机和学习的几个方面。最近的研究表明,在固定比率(FR)5 方案(即从 FR1 到 FR5 的转变)的第一天训练中,伏隔核壳中的多巴胺(DA)释放显著增加,与那些继续 FR1 训练的大鼠相比,即使在 FR5 训练的第一天,大鼠接受的食物强化比继续 FR1 方案的大鼠少。此外,在 FR5 反应的第二天,伏隔核核心中的 DA 释放显著增加。本研究采用免疫组织化学方法,研究了在食物强化 FR5 训练的不同阶段,伏隔核和新纹状体神经活动的细胞标志物的变化。在 FR5 训练的第一天,伏隔核壳中的 c-Fos 和 DARPP-32 免疫反应性显著增加,而核心中的 c-Fos 和 DARPP-32 表达在 FR5 训练的第二天显著增加。进一步的研究表明,在更广泛的训练后,新纹状体中的 c-Fos 和 DARPP-32 表达增加。免疫荧光方法的双标记研究表明,伏隔核中 c-Fos 和 DARPP-32 表达的增加主要见于 P 物质阳性神经元。在 FR 训练的初始阶段,伏隔核中 c-Fos 和 DARPP-32 免疫反应性的增加可能反映了几个因素,包括新奇、学习、应激或向机体呈现与工作相关的挑战。此外,似乎纹状体复合体的不同亚区在不同的工具训练阶段被不同程度地激活。

相似文献

2
Slow phasic changes in nucleus accumbens dopamine release during fixed ratio acquisition: a microdialysis study.
Neuroscience. 2011 Nov 24;196:178-88. doi: 10.1016/j.neuroscience.2011.07.078. Epub 2011 Aug 25.
4
Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors.
Neuroscience. 2010 Apr 14;166(4):1056-67. doi: 10.1016/j.neuroscience.2009.12.056. Epub 2010 Jan 20.
5
Nucleus accumbens dopamine release increases during instrumental lever pressing for food but not free food consumption.
Pharmacol Biochem Behav. 1994 Sep;49(1):25-31. doi: 10.1016/0091-3057(94)90452-9.
8
Nucleus accumbens dopamine and work requirements on interval schedules.
Behav Brain Res. 2002 Dec 2;137(1-2):179-87. doi: 10.1016/s0166-4328(02)00292-9.
10
Effects of food deprivation on goal-directed behavior, spontaneous locomotion, and c-Fos immunoreactivity in the amygdala.
Behav Brain Res. 2009 Jan 30;197(1):9-15. doi: 10.1016/j.bbr.2008.07.025. Epub 2008 Jul 29.

引用本文的文献

1
Dorsal striatum c-Fos activity in perseverative ephrin-A2A5 mice and the cellular effect of low-intensity rTMS.
Front Neural Circuits. 2023 Jun 15;17:1179096. doi: 10.3389/fncir.2023.1179096. eCollection 2023.
3
Molecular Plasticity of the Nucleus Accumbens Revisited-Astrocytic Waves Shall Rise.
Mol Neurobiol. 2019 Dec;56(12):7950-7965. doi: 10.1007/s12035-019-1641-z. Epub 2019 May 27.
5
Corticoinsular circuits encode subjective value expectation and violation for effortful goal-directed behavior.
Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5233-E5242. doi: 10.1073/pnas.1800444115. Epub 2018 May 14.
6
Dopamine, Effort-Based Choice, and Behavioral Economics: Basic and Translational Research.
Front Behav Neurosci. 2018 Mar 23;12:52. doi: 10.3389/fnbeh.2018.00052. eCollection 2018.
7
Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization.
Psychopharmacology (Berl). 2016 Oct;233(19-20):3575-86. doi: 10.1007/s00213-016-4392-9. Epub 2016 Aug 6.
9
PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission.
Neuropsychopharmacology. 2015 Mar;40(4):927-37. doi: 10.1038/npp.2014.268. Epub 2014 Sep 14.
10
Role of the plasticity-associated transcription factor zif268 in the early phase of instrumental learning.
PLoS One. 2014 Jan 23;9(1):e81868. doi: 10.1371/journal.pone.0081868. eCollection 2014.

本文引用的文献

1
DARPP-32, Jack of All Trades… Master of Which?
Front Behav Neurosci. 2011 Sep 8;5:56. doi: 10.3389/fnbeh.2011.00056. eCollection 2011.
2
Slow phasic changes in nucleus accumbens dopamine release during fixed ratio acquisition: a microdialysis study.
Neuroscience. 2011 Nov 24;196:178-88. doi: 10.1016/j.neuroscience.2011.07.078. Epub 2011 Aug 25.
3
Dopamine and effort-based decision making.
Front Neurosci. 2011 Jun 21;5:81. doi: 10.3389/fnins.2011.00081. eCollection 2011.
4
Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers.
Front Neurosci. 2011 May 20;5:71. doi: 10.3389/fnins.2011.00071. eCollection 2011.
5
Casein kinase 1 enables nucleus accumbens amphetamine-induced locomotion by regulating AMPA receptor phosphorylation.
J Neurochem. 2011 Jul;118(2):237-47. doi: 10.1111/j.1471-4159.2011.07308.x. Epub 2011 Jun 6.
8
Nucleus accumbens neurons encode predicted and ongoing reward costs in rats.
Eur J Neurosci. 2011 Jan;33(2):308-21. doi: 10.1111/j.1460-9568.2010.07531.x. Epub 2010 Dec 29.
9
A selective role for dopamine in stimulus-reward learning.
Nature. 2011 Jan 6;469(7328):53-7. doi: 10.1038/nature09588. Epub 2010 Dec 8.
10
Dopamine in motivational control: rewarding, aversive, and alerting.
Neuron. 2010 Dec 9;68(5):815-34. doi: 10.1016/j.neuron.2010.11.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验