Suppr超能文献

熔融盐中电导率最大值的起源。I. 氯化铋。

The origin of the conductivity maximum in molten salts. I. Bismuth chloride.

机构信息

Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.

出版信息

J Chem Phys. 2012 Mar 28;136(12):124504. doi: 10.1063/1.3694830.

Abstract

A new theory is presented to explain the conductivity maxima of molten salts (versus temperature and pressure). In the new theory, conductivity is due to ions hopping from counterion to counterion, and its temperature dependence can be explained with an ordinary Arrhenius equation in which the frequency prefactor A (for hopping opportunities) and activation energy E(a) (for hopping) are density dependent. The conductivity maximum is due to competing effects: as density decreases, the frequency of opportunities for hopping increases, but the probability that an opportunity is successfully hopped decreases due to rising E(a) caused by the increased hopping distance. The theory is successfully applied to molten bismuth (III) chloride, and supported by density-functional based molecular dynamics simulations which not only reproduce the conductivity maximum, but disprove the long-standing conjecture that this liquid features an equilibrium between BiCl(3) molecules, and BiCl(2)(+) and BiCl(4)(-) ions that shifts to the left with increasing temperature.

摘要

提出了一个新的理论来解释熔融盐的电导率最大值(相对于温度和压力)。在新理论中,电导率是由于离子从反离子到反离子的跳跃引起的,其温度依赖性可以用普通的 Arrhenius 方程来解释,其中频率前因子 A(用于跳跃机会)和活化能 E(a)(用于跳跃)是密度相关的。电导率最大值是由于竞争效应:随着密度的降低,跳跃机会的频率增加,但由于跳跃距离增加导致的 E(a)升高,成功跳跃的机会的概率降低。该理论成功应用于熔融三氯化铋,并得到基于密度泛函的分子动力学模拟的支持,该模拟不仅再现了电导率最大值,而且否定了长期存在的假设,即该液体在 BiCl(3)分子、BiCl(2)(+)和 BiCl(4)(-)离子之间存在平衡,并且随着温度的升高向左移动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验