Walz Marie-Madeleine, van der Spoel David
Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124, Uppsala, Sweden.
Commun Chem. 2021 Jan 27;4(1):9. doi: 10.1038/s42004-020-00446-2.
Molten salts are crucial materials in energy applications, such as batteries, thermal energy storage systems or concentrated solar power plants. Still, the determination and interpretation of basic physico-chemical properties like ionic conductivity, mobilities and transference numbers cause debate. Here, we explore a method for determination of ionic electrical mobilities based on non-equilibrium computer simulations. Partial conductivities are then determined as a function of system composition and temperature from simulations of molten LiFClI (with α + β + γ = 1). High conductivity does not necessarily coincide with high Li mobility for molten LiFClI systems at a given temperature. In salt mixtures, the lighter anions on average drift along with Li towards the negative electrode when applying an electric field and only the heavier anions move towards the positive electrode. In conclusion, the microscopic origin of conductivity in molten salts is unraveled here based on accurate ionic electrical mobilities and an analysis of the local structure and kinetics of the materials.
熔盐是能源应用中的关键材料,如电池、热能存储系统或聚光太阳能发电厂。然而,对于离子电导率、迁移率和迁移数等基本物理化学性质的测定和解释仍存在争议。在此,我们探索了一种基于非平衡计算机模拟来测定离子电迁移率的方法。然后,通过对熔融LiFClI(α + β + γ = 1)的模拟,确定部分电导率作为系统组成和温度的函数。对于给定温度下的熔融LiFClI系统,高电导率并不一定与高Li迁移率相一致。在盐混合物中,施加电场时,较轻的阴离子平均会与Li一起向负极漂移,只有较重的阴离子会向正极移动。总之,本文基于精确的离子电迁移率以及对材料局部结构和动力学的分析,揭示了熔盐中电导率的微观起源。