Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong, People's Republic of China.
Chaos. 2012 Mar;22(1):013107. doi: 10.1063/1.3673789.
Recently, a framework for analyzing time series by constructing an associated complex network has attracted significant research interest. One of the advantages of the complex network method for studying time series is that complex network theory provides a tool to describe either important nodes, or structures that exist in the networks, at different topological scale. This can then provide distinct information for time series of different dynamical systems. In this paper, we systematically investigate the recurrence-based phase space network of order k that has previously been used to specify different types of dynamics in terms of the motif ranking from a different perspective. Globally, we find that the network size scales with different scale exponents and the degree distribution follows a quasi-symmetric bell shape around the value of 2k with different values of degree variance from periodic to chaotic Rössler systems. Local network properties such as the vertex degree, the clustering coefficients and betweenness centrality are found to be sensitive to the local stability of the orbits and hence contain complementary information.
最近,通过构建关联复杂网络来分析时间序列的框架引起了广泛的研究兴趣。复杂网络方法研究时间序列的一个优点是,复杂网络理论为描述网络中的重要节点或结构提供了一种工具,这些节点或结构存在于不同的拓扑尺度上。这可以为不同动力系统的时间序列提供独特的信息。在本文中,我们从不同的角度系统地研究了先前用于根据基序排序指定不同类型动力学的基于递归的阶 k 相空间网络。总体而言,我们发现网络大小随不同的标度指数而变化,而度分布在从周期性到混沌 Rossler 系统的不同值的情况下,围绕 2k 值呈准对称钟形。局部网络属性,如顶点度、聚类系数和中间中心性,被发现对轨道的局部稳定性敏感,因此包含互补信息。