The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
Chaos. 2012 Mar;22(1):013138. doi: 10.1063/1.3695342.
Some new effects in the soliton dynamics governed by higher order Korteweg-de Vries (KdV) equations are discussed based on the exact explicit solutions of the equations on the positive half-line. The solutions describe the process of generation of a soliton that occurs without boundary forcing and on the steady state background: the boundary conditions remain constant and the initial distribution is a steady state solution of the problem. The time moment when the soliton generation starts is not determined by the parameters present in the problem formulation, the additional parameters imbedded into the solution are needed to determine that moment. The equations found capable of describing those effects are the integrable Sawada-Kotera equation and the KdV-Kaup-Kupershmidt (KdV-KK) equation which, albeit not proven to be integrable, possesses multi-soliton solutions.
基于正半轴上的方程的精确显式解,讨论了高阶 Korteweg-de Vries (KdV) 方程控制下的孤子动力学的一些新效应。这些解描述了在没有边界强迫和稳态背景下发生的孤子产生过程:边界条件保持不变,初始分布是问题的稳态解。孤子产生开始的时间时刻不由问题表述中的参数决定,需要嵌入到解中的附加参数来确定该时刻。发现能够描述这些效应的方程是可积的 Sawada-Kotera 方程和 KdV-Kaup-Kupershmidt (KdV-KK) 方程,尽管尚未证明其可积性,但它们具有多孤子解。