Physics of Fluids Group, MESA+ Institute for Nanotechnology, J. M. Burgers Centre for Fluid Dynamics, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands.
Phys Rev Lett. 2012 Mar 9;108(10):104501. doi: 10.1103/PhysRevLett.108.104501. Epub 2012 Mar 7.
We study surface nanobubbles using molecular dynamics simulation of ternary (gas, liquid, solid) systems of Lennard-Jones fluids. They form for a sufficiently low gas solubility in the liquid, i.e., for a large relative gas concentration. For a strong enough gas-solid attraction, the surface nanobubble is sitting on a gas layer, which forms in between the liquid and the solid. This gas layer is the reason for the universality of the contact angle, which we calculate from the microscopic parameters. Under the present equilibrium conditions the nanobubbles dissolve within less of a microsecond, consistent with the view that the experimentally found nanobubbles are stabilized by a nonequilibrium mechanism.
我们使用 Lennard-Jones 流体三元(气体、液体、固体)系统的分子动力学模拟来研究表面纳米气泡。它们在气体在液体中的溶解度足够低时形成,也就是说,在相对较大的气体浓度时形成。对于气体-固体吸引力足够强的情况,表面纳米气泡位于气体层上,气体层在液体和固体之间形成。这种气体层是接触角具有普遍性的原因,我们可以从微观参数计算出接触角。在目前的平衡条件下,纳米气泡在不到微秒的时间内溶解,这与实验中发现的纳米气泡通过非平衡机制稳定的观点一致。