Suppr超能文献

疏水固/液界面上氮吸附与积累过程及机制的分子洞察

Molecular Insight into the Processes and Mechanisms of N Adsorption and Accumulation at the Hydrophobic Solid/Liquid Interface.

作者信息

Li Bao, Su Dan

机构信息

College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

出版信息

Molecules. 2024 Jun 6;29(11):2711. doi: 10.3390/molecules29112711.

Abstract

In this study, molecular dynamics (MD) simulations were employed to elucidate the processes and underlying mechanisms that govern the adsorption and accumulation of gas (represented by N) at the hydrophobic solid-liquid interface, using the GROMACS program with an AMBER force field. Our findings indicate that, regardless of surface roughness, the presence of water molecules is a prerequisite for the adsorption and aggregation of N molecules on solid surfaces. N molecules dissolved in water can cluster even without a solid substrate. In the gas-solid-liquid system, the exclusion of water molecules at the hydrophobic solid-liquid interface and the adsorption of N molecules do not occur simultaneously. A loosely arranged layer of water molecules is initially formed on the hydrophobic solid surface. The two-stage process of N molecule adsorption and accumulation at the hydrophobic solid/liquid interface involves initial adsorption to the solid surface, displacing water molecules, followed by N accumulation via self-interaction after saturating the substrate's surface. The process and underlying mechanisms of gas adsorption and accumulation at hydrophobic solid/liquid interfaces elucidated in this study offer a molecular-level understanding of nano-gas layer formation.

摘要

在本研究中,使用带有AMBER力场的GROMACS程序,通过分子动力学(MD)模拟来阐明控制气体(以N表示)在疏水固液界面吸附和积累的过程及潜在机制。我们的研究结果表明,无论表面粗糙度如何,水分子的存在是N分子在固体表面吸附和聚集的先决条件。溶解在水中的N分子即使没有固体底物也能聚集。在气-固-液系统中,疏水固液界面处水分子的排斥和N分子的吸附不会同时发生。疏水固体表面最初会形成一层排列松散的水分子。N分子在疏水固/液界面吸附和积累的两阶段过程包括:首先吸附到固体表面,取代水分子,然后在底物表面饱和后通过自相互作用进行N积累。本研究中阐明的气体在疏水固/液界面吸附和积累的过程及潜在机制,为纳米气体层的形成提供了分子层面的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51ba/11173470/fd2997fd1ea2/molecules-29-02711-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验