Department of Chemistry, Duke University, Durham, NC 27708, USA.
Phys Chem Chem Phys. 2012 Jun 7;14(21):7700-9. doi: 10.1039/c2cp23714h. Epub 2012 Apr 2.
We reformulate the density fragment interaction (DFI) approach [Fujimoto and Yang, J. Chem. Phys., 2008, 129, 054102.] to achieve linear-scaling quantum mechanical calculations for large molecular systems. Two key approximations are developed to improve the efficiency of the DFI approach and thus enable the calculations for large molecules: the electrostatic interactions between fragments are computed efficiently by means of polarizable electrostatic-potential-fitted atomic charges; and frozen fragment pseudopotentials, similar to the effective fragment potentials that can be fitted from interactions between small molecules, are employed to take into account the Pauli repulsion effect among fragments. Our reformulated and parallelized DFI method demonstrates excellent parallel performance based on the benchmarks for the system of 256 water molecules. Molecular dynamics simulations for the structural properties of liquid water also show a qualitatively good agreement with experimental measurements including the heat capacity, binding energy per water molecule, and the radial distribution functions of atomic pairs of O-O, O-H, and H-H. With this approach, large-scale quantum mechanical simulations for water and other liquids become feasible.
我们重新制定了密度片段相互作用(DFI)方法[Fujimoto 和 Yang,J. Chem. Phys.,2008,129,054102],以实现对大型分子系统的线性标度量子力学计算。我们开发了两个关键的近似方法来提高 DFI 方法的效率,从而能够对大型分子进行计算:通过使用可极化静电势拟合原子电荷,有效地计算片段之间的静电相互作用;并且采用冻结片段赝势,类似于可以从小分子相互作用中拟合的有效片段势,以考虑片段之间的 Pauli 排斥效应。我们重新制定和并行化的 DFI 方法在 256 个水分子系统的基准测试中表现出出色的并行性能。液态水结构性质的分子动力学模拟也与实验测量结果定性吻合,包括热容、每个水分子的结合能以及 O-O、O-H 和 H-H 原子对的径向分布函数。通过这种方法,对水和其他液体进行大规模量子力学模拟成为可能。