Usarek Michał, Bryła Jadwiga
Zakład Regulacji Metabolizmu, Instytut Biochemii, Wydział Biologii, Uniwersytet Warszawski, ul. I. Miecznikowa 1, 02-096 Warszawa.
Postepy Hig Med Dosw (Online). 2012 Mar 14;66:135-45. doi: 10.5604/17322693.986169.
Proinsulin C-peptide, released in equimolar amounts with insulin by pancreatic β cells, since its discovery in 1967 has been thought to be devoid of biological functions apart from correct insulin processing and formation of disulfide bonds between A and B chains. However, in the last two decades research has brought a substantial amount of data indicating a crucial role of C-peptide in regulating various processes in different types of cells and organs. C-peptide acts presumably via either G-protein-coupled receptor or directly inside the cell, after being internalized. However, a receptor binding this peptide has not been identified yet. This peptide ameliorates pathological changes induced by type 1 diabetes mellitus, including glomerular hyperfiltration, vessel endothelium inflammation and neuron demyelinization. In diabetic patients and diabetic animal models, C-peptide substitution in physiological doses improves the functional and structural properties of peripheral neurons and protects against hyperglycemia-induced apoptosis, promoting neuronal development, regeneration and cell survival. Moreover, it affects glycogen synthesis in skeletal muscles. In vitro C-peptide promotes disaggregation of insulin oligomers, thus enhancing its bioavailability and effects on metabolism. There are controversies concerning the biological action of C-peptide, particularly with respect to its effect on Na⁺/K⁺-ATPase activity. Surprisingly, the excess of circulating peptide associated with diabetes type 2 contributes to atherosclerosis development. In view of these observations, long-term, large-scale clinical investigations using C-peptide physiological doses need to be conducted in order to determine safety and health outcomes of long-term administration of C-peptide to diabetic patients.
胰岛素原C肽由胰腺β细胞与胰岛素等摩尔量释放,自1967年被发现以来,人们一直认为它除了在正确加工胰岛素以及在A链和B链之间形成二硫键方面发挥作用外,没有其他生物学功能。然而,在过去的二十年里,研究积累了大量数据,表明C肽在调节不同类型细胞和器官的各种过程中起着关键作用。C肽可能通过G蛋白偶联受体发挥作用,或者在被内化后直接在细胞内发挥作用。然而尚未鉴定出与该肽结合的受体。这种肽可改善1型糖尿病引起的病理变化,包括肾小球高滤过、血管内皮炎症和神经元脱髓鞘。在糖尿病患者和糖尿病动物模型中,生理剂量的C肽替代可改善外周神经元的功能和结构特性,防止高血糖诱导的细胞凋亡,促进神经元发育、再生和细胞存活。此外,它还影响骨骼肌中的糖原合成。在体外,C肽可促进胰岛素寡聚体的解聚,从而提高其生物利用度及其对代谢的作用。关于C肽的生物学作用存在争议,特别是关于其对Na⁺/K⁺-ATP酶活性的影响。令人惊讶的是,与2型糖尿病相关的循环肽过量会促进动脉粥样硬化的发展。鉴于这些观察结果,需要进行长期、大规模的临床研究,以确定向糖尿病患者长期施用C肽的安全性和健康结果。