Suppr超能文献

面向变化气候下土地利用规划的北美植被模型:解决大规模分类问题的方法。

North American vegetation model for land-use planning in a changing climate: a solution to large classification problems.

机构信息

Rocky Mountain Research Station, USDA Forest Service, Forestry Sciences Laboratory, 1221 South Main, Moscow, Idaho 83843, USA.

出版信息

Ecol Appl. 2012 Jan;22(1):119-41. doi: 10.1890/11-0495.1.

Abstract

Data points intensively sampling 46 North American biomes were used to predict the geographic distribution of biomes from climate variables using the Random Forests classification tree. Techniques were incorporated to accommodate a large number of classes and to predict the future occurrence of climates beyond the contemporary climatic range of the biomes. Errors of prediction from the statistical model averaged 3.7%, but for individual biomes, ranged from 0% to 21.5%. In validating the ability of the model to identify climates without analogs, 78% of 1528 locations outside North America and 81% of land area of the Caribbean Islands were predicted to have no analogs among the 46 biomes. Biome climates were projected into the future according to low and high greenhouse gas emission scenarios of three General Circulation Models for three periods, the decades surrounding 2030, 2060, and 2090. Prominent in the projections were (1) expansion of climates suitable for the tropical dry deciduous forests of Mexico, (2) expansion of climates typifying desertscrub biomes of western USA and northern Mexico, (3) stability of climates typifying the evergreen-deciduous forests of eastern USA, and (4) northward expansion of climates suited to temperate forests, Great Plains grasslands, and montane forests to the detriment of taiga and tundra climates. Maps indicating either poor agreement among projections or climates without contemporary analogs identify geographic areas where land management programs would be most equivocal. Concentrating efforts and resources where projections are more certain can assure land managers a greater likelihood of success.

摘要

使用随机森林分类树,从气候变量预测生物群落的地理分布,利用集中采样的北美 46 个生物群落数据点。该技术旨在适应大量类别,并预测生物群落当代气候范围以外的未来气候发生情况。统计模型的预测误差平均为 3.7%,但对于个别生物群落,误差范围从 0%到 21.5%。在验证该模型识别无类似物气候的能力时,在北美以外的 1528 个地点和加勒比地区的 81%土地面积中,有 78%的地点被预测为在 46 个生物群落中没有类似物。根据三种全球环流模型的低和高温室气体排放情景,将生物群落的气候预测到未来三个时期,即 2030 年、2060 年和 2090 年前后的几十年。预测中突出的有:(1)适合墨西哥热带干旱落叶林的气候扩张;(2)美国西部和墨西哥北部沙漠灌丛生物群落典型气候的扩张;(3)美国东部常绿落叶林典型气候的稳定;(4)适合温带森林、大平原草原和山地森林的气候向北扩张,对泰加林和苔原气候不利。指示预测结果差异较大或没有当代类似物的地图确定了土地管理计划最不确定的地理区域。集中在预测结果更确定的地方投入精力和资源,可以确保土地管理者更有可能取得成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验