Department of Organic Chemistry A. Mangini, University of Bologna, Via San Giacomo 11, 40126, Bologna, Italy.
Chemistry. 2012 May 14;18(20):6370-9. doi: 10.1002/chem.201103459. Epub 2012 Mar 30.
Sulfenic acids play a prominent role in biology as key participants in cellular signaling relating to redox homeostasis, in the formation of protein-disulfide linkages, and as the central players in the fascinating organosulfur chemistry of the Allium species (e.g., garlic). Despite their relevance, direct measurements of their reaction kinetics have proven difficult owing to their high reactivity. Herein, we describe the results of hydrocarbon autoxidations inhibited by the persistent 9-triptycenesulfenic acid, which yields a second order rate constant of 3.0×10(6) M(-1) s(-1) for its reaction with peroxyl radicals in PhCl at 30 °C. This rate constant drops 19-fold in CH(3)CN, and is subject to a significant primary deuterium kinetic isotope effect, k(H)/k(D) = 6.1, supporting a formal H-atom transfer (HAT) mechanism. Analogous autoxidations inhibited by the Allium-derived (S)-benzyl phenylmethanethiosulfinate and a corresponding deuterium-labeled derivative unequivocally demonstrate the role of sulfenic acids in the radical-trapping antioxidant activity of thiosulfinates, through the rate-determining Cope elimination of phenylmethanesulfenic acid (k(H)/k(D) ≈ 4.5) and its subsequent formal HAT reaction with peroxyl radicals (k(H)/k(D) ≈ 3.5). The rate constant that we derived from these experiments for the reaction of phenylmethanesulfenic acid with peroxyl radicals was 2.8×10(7) M(-1) s(-1); a value 10-fold larger than that we measured for the reaction of 9-triptycenesulfenic acid with peroxyl radicals. We propose that whereas phenylmethanesulfenic acid can adopt the optimal syn geometry for a 5-centre proton-coupled electron-transfer reaction with a peroxyl radical, the 9-triptycenesulfenic is too sterically hindered, and undergoes the reaction instead through the less-energetically favorable anti geometry, which is reminiscent of a conventional HAT.
亚磺酸在生物学中起着重要的作用,作为与氧化还原平衡有关的细胞信号转导的关键参与者,作为蛋白质二硫键形成的参与者,以及作为大蒜等 Allium 物种迷人的有机硫化学的核心参与者。尽管它们很重要,但由于其高反应性,直接测量它们的反应动力学一直很困难。在此,我们描述了持久的 9-三芴基亚磺酸抑制烃类自动氧化的结果,在 30°C 的 PhCl 中,其与过氧自由基的反应的二级速率常数为 3.0×10(6)M(-1)s(-1)。该速率常数在 CH(3)CN 中下降 19 倍,并且受到显著的初级氘动力学同位素效应的影响,k(H)/k(D) = 6.1,支持形式的 H-原子转移(HAT)机制。由大蒜衍生的(S)-苄基苯甲硫醚亚磺酸和相应的氘标记衍生物抑制的类似自动氧化反应,通过苯甲硫醚亚磺酸的速率决定 Cope 消除(k(H)/k(D)≈4.5)及其随后与过氧自由基的形式 HAT 反应(k(H)/k(D)≈3.5),明确证明了亚磺酸盐在硫代亚磺酸盐的自由基捕获抗氧化活性中的作用。我们从这些实验中推导出的苯甲硫醚亚磺酸与过氧自由基反应的速率常数为 2.8×10(7)M(-1)s(-1);比我们测量的 9-三芴基亚磺酸与过氧自由基反应的速率常数大 10 倍。我们提出,虽然苯甲硫醚亚磺酸可以采用与过氧自由基发生 5 中心质子偶联电子转移反应的最佳 syn 几何形状,但 9-三芴基亚磺酸的空间位阻太大,而是通过能量较低的反几何形状进行反应,这让人想起传统的 HAT。