Suppr超能文献

皮层中视觉场景的解构:物体和空间布局信息的梯度。

Deconstructing visual scenes in cortex: gradients of object and spatial layout information.

机构信息

Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Cereb Cortex. 2013 Apr;23(4):947-57. doi: 10.1093/cercor/bhs091. Epub 2012 Apr 3.

Abstract

Real-world visual scenes are complex cluttered, and heterogeneous stimuli engaging scene- and object-selective cortical regions including parahippocampal place area (PPA), retrosplenial complex (RSC), and lateral occipital complex (LOC). To understand the unique contribution of each region to distributed scene representations, we generated predictions based on a neuroanatomical framework adapted from monkey and tested them using minimal scenes in which we independently manipulated both spatial layout (open, closed, and gradient) and object content (furniture, e.g., bed, dresser). Commensurate with its strong connectivity with posterior parietal cortex, RSC evidenced strong spatial layout information but no object information, and its response was not even modulated by object presence. In contrast, LOC, which lies within the ventral visual pathway, contained strong object information but no background information. Finally, PPA, which is connected with both the dorsal and the ventral visual pathway, showed information about both objects and spatial backgrounds and was sensitive to the presence or absence of either. These results suggest that 1) LOC, PPA, and RSC have distinct representations, emphasizing different aspects of scenes, 2) the specific representations in each region are predictable from their patterns of connectivity, and 3) PPA combines both spatial layout and object information as predicted by connectivity.

摘要

真实世界的视觉场景是复杂的、混乱的和异质的刺激,涉及到场景和物体选择性皮质区域,包括海马旁回位置区域(PPA)、后扣带回复合体(RSC)和外侧枕叶复合体(LOC)。为了了解每个区域对分布式场景表示的独特贡献,我们基于猴子的神经解剖学框架生成了预测,并使用最小场景对其进行了测试,在这些场景中,我们独立地操纵了空间布局(开放、关闭和渐变)和物体内容(家具,例如床、梳妆台)。与后顶叶皮层的强烈连接相一致,RSC 表现出强烈的空间布局信息,但没有物体信息,其反应甚至不受物体存在的调制。相比之下,位于腹侧视觉通路内的 LOC 包含强烈的物体信息,但没有背景信息。最后,PPA 与背侧和腹侧视觉通路都有连接,显示了关于物体和空间背景的信息,并且对物体或背景的存在都很敏感。这些结果表明:1)LOC、PPA 和 RSC 具有不同的表示,强调了场景的不同方面;2)每个区域的特定表示可以从它们的连接模式中预测出来;3)PPA 结合了空间布局和物体信息,这与连接的预测一致。

相似文献

4
Multiple object properties drive scene-selective regions.多个物体属性驱动场景选择区域。
Cereb Cortex. 2014 Apr;24(4):883-97. doi: 10.1093/cercor/bhs364. Epub 2012 Dec 4.
8
The occipital place area represents the local elements of scenes.枕叶位置区域代表场景的局部元素。
Neuroimage. 2016 May 15;132:417-424. doi: 10.1016/j.neuroimage.2016.02.062. Epub 2016 Feb 27.

引用本文的文献

5
Efficient Neural Decoding Based on Multimodal Training.基于多模态训练的高效神经解码
Brain Sci. 2024 Sep 28;14(10):988. doi: 10.3390/brainsci14100988.
6
Predictive processing of scenes and objects.场景和物体的预测性处理。
Nat Rev Psychol. 2024 Jan;3:13-26. doi: 10.1038/s44159-023-00254-0. Epub 2023 Nov 23.

本文引用的文献

5
Modality-independent coding of spatial layout in the human brain.人类大脑中空间布局的模态无关编码。
Curr Biol. 2011 Jun 7;21(11):984-9. doi: 10.1016/j.cub.2011.04.038. Epub 2011 May 27.
10
Early onset of neural synchronization in the contextual associations network.语境关联网络中神经同步的早期出现。
Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3389-94. doi: 10.1073/pnas.1013760108. Epub 2011 Feb 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验