Suppr超能文献

基于结构的化学分类和本体论。

Structure-based classification and ontology in chemistry.

机构信息

Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK.

出版信息

J Cheminform. 2012 Apr 5;4:8. doi: 10.1186/1758-2946-4-8.

Abstract

BACKGROUND

Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies.

RESULTS

We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches.

CONCLUSION

Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research.

摘要

背景

近年来,化学领域的数据呈爆炸式增长。然而,随着信息的爆炸式增长,从可用信息中检索相关结果并对这些结果进行组织变得更加困难。计算处理对于过滤和组织可用资源至关重要,以便更好地为科学家提供便利。本体论以层次化的机器可处理格式对专家领域知识进行编码。化学领域的一个本体论是 ChEBI。ChEBI 根据其结构特征和基于角色或活动的分类对化学品进行分类。基于结构的分类的一个例子是“五环化合物”(含有五环结构的化合物),而基于角色的分类的一个例子是“镇痛药”,因为许多不同的化学品可以作为镇痛药而无需共享结构特征。化学中的基于结构的分类利用了基础化学领域中的优雅规律和对称性。到目前为止,还没有对化学中使用的结构分类类型进行系统分析,也没有与可用技术的能力进行比较。

结果

我们分析了化学中不同类别的结构类别,提出了在类定义中发现的特征模式列表。我们将这些类定义模式与允许在化学信息学和基于逻辑的本体技术内自动化构建层次结构的工具进行了比较,在后者的情况下详细讨论了 Web 本体语言和最近用于建模结构化对象的扩展的表达能力。最后,我们讨论了化学信息学方法和基于逻辑的方法之间的关系和相互作用。

结论

需要一系列不同的计算工具来执行基于化学数据的智能推理任务,包括算法、统计和基于逻辑的工具。对于化学实体的自动基于结构的分类任务,对于管理正在上线的大量化学数据至关重要,能够结合几种不同方法进行混合推理的系统至关重要。我们对可用工具和方法进行了全面回顾,并确定了开放研究领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fdb/3361486/975f0a4550ba/1758-2946-4-8-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验