Suppr超能文献

一种用于外部刺激下骨转换的半经验细胞动力学模型。

A semi-empirical cell dynamics model for bone turnover under external stimulus.

作者信息

Carew E Owen

机构信息

Department of Mathematical Sciences, Kent State University at Salem, Salem, OH 44460, USA.

出版信息

J Biomech Eng. 2012 Feb;134(2):024503. doi: 10.1115/1.4005761.

Abstract

The normal periodic turnover of bone is referred to as remodeling. In remodeling, old or damaged bone is removed during a 'resorption' phase and new bone is formed in its place during a 'formation' phase in a sequence of events known as coupling. Resorption is preceded by an 'activation' phase in which the signal to remodel is initiated and transmitted. Remodeling is known to involve the interaction of external stimuli, bone cells, calcium and phosphate ions, and several proteins, hormones, molecules, and factors. In this study, a semi-empirical cell dynamics model for bone remodeling under external stimulus that accounts for the interaction between bone mass, bone fluid calcium, bone calcium, and all three major bone cell types, is presented. The model is formulated to mimic biological coupling by solving separately and sequentially systems of ODEs for the activation, resorption, and formation phases of bone remodeling. The charateristic time for resorption (20 days) and the amount of resorption (~0.5%) are fixed for all simulations, but the formation time at turnover is an output of the model. The model was used to investigate the effects of different types of strain stimuli on bone turnover under bone fluid calcium balance and imbalance conditions. For bone fluid calcium balance, the model predicts complete turnover after 130 days of formation under constant 1000 microstrain stimulus; after 47 days of formation under constant 2000 microstrain stimulus; after 173 days of formation under strain-free conditions, and after 80 days of formation under monotonic increasing strain stimulus from 1000 to 2000 microstrain. For bone fluid calcium imbalance, the model predicts that complete turnover occurs after 261 days of formation under constant 1000 microstrain stimulus and that turnover never occurs under strain-free conditions. These predictions were not impacted by mean dynamic input strain stimuli of 1000 and 2000 microstrain at 1 Hz and 1000 microstrain amplitude. The formation phase of remodeling lasts longer than the resorption phase, increased strain stimulus accelerates bone turnover, while absence of strain significantly delays or prevents it, and formation time for turnover under monotonic increasing strain conditions is intermediate to those for constant strain stimuli at the minimum and maximum monotonic strain levels. These results are consistent with the biology, and with Frost's mechanostat theory.

摘要

骨骼的正常周期性更新被称为重塑。在重塑过程中,旧的或受损的骨骼在“吸收”阶段被清除,新的骨骼在“形成”阶段于其位置形成,这一系列事件被称为耦合。在吸收之前有一个“激活”阶段,在这个阶段启动并传递重塑信号。已知重塑涉及外部刺激、骨细胞、钙和磷酸根离子以及多种蛋白质、激素、分子和因子之间的相互作用。在本研究中,提出了一种用于外部刺激下骨重塑的半经验细胞动力学模型,该模型考虑了骨量、骨液钙、骨钙以及所有三种主要骨细胞类型之间的相互作用。该模型通过分别且顺序地求解骨重塑激活、吸收和形成阶段的常微分方程组来模拟生物耦合。所有模拟中吸收的特征时间(20天)和吸收量(约0.5%)是固定的,但更新时的形成时间是模型的一个输出。该模型用于研究在骨液钙平衡和不平衡条件下不同类型应变刺激对骨更新的影响。对于骨液钙平衡,该模型预测在1000微应变恒定刺激下形成130天后完成更新;在2000微应变恒定刺激下形成47天后完成更新;在无应变条件下形成173天后完成更新;在从1000到2000微应变单调增加应变刺激下形成80天后完成更新。对于骨液钙不平衡,该模型预测在1000微应变恒定刺激下形成261天后发生完全更新,而在无应变条件下从不发生更新。这些预测不受1赫兹下1000和2000微应变以及1000微应变幅度的平均动态输入应变刺激的影响。重塑的形成阶段持续时间长于吸收阶段,增加的应变刺激加速骨更新,而无应变会显著延迟或阻止骨更新,并且在单调增加应变条件下更新的形成时间介于最小和最大单调应变水平下恒定应变刺激的形成时间之间。这些结果与生物学以及弗罗斯特的机械稳态理论一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验